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Abstract: In this paper, we investigated inflationary solutions for a subclass of Horndeski models
where a scalar field is non-minimally coupled with the Gauss–Bonnet invariant. Examples of
canonical scalar field and k-essence to support the early-time acceleration are considered.
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1. Introduction

Tracing back the history of our expanding universe, we find an era after the Big Bang when
temperature and effective energy density are extremely large, such that we expect that some curvature
corrections or some extra-field departing from standard matter and radiation (maybe induced by
quantum effects or motivated by string theory) appear in the framework of General Relativity. The
evidence of this fact is substantiated by the well-accepted idea according to which, near to the Planck
scale, the universe underwent a short period of strong accelerated expansion—namely, the early-time
inflation [1,2]—whose dynamics cannot be described by standard cosmology. Thus, it is believed that
inflation may be due to several factors, the mainly being modifications of the theory of gravitation
itself (see Refs. [3–7] for some reviews) and the existence of a scalar field—the inflaton—supporting
acceleration [8–12].

The Lagrangian of modified gravity is much more involved with respect to the one of General
Relativity, and leads to fourth order differential equations. However, in 1974, Horndeski [13] found
the most general class of scalar tensor theories (where a scalar field is coupled with gravity) which
possesses standard Lagrangian, like in the theory of Einstein. Horndeski gravity is quite popular
and has been considered in many works, especially in the context of inflationary cosmology [14–26].
Moreover, one interesting subclass of Horndeski gravity is represented by the non-minimal coupling
of the field with the Gauss–Bonnet four-dimensional topological invariant [27–32], since the
Gauss–Bonnet invariant is strictly connected with the string theory and the trace anomaly and may
play an important role in the early-time expansion of our universe.

In the present work, we will consider a class of models where a scalar field supporting inflation
is coupled with the Gauss–Bonnet invariant. The theory can be inferred as a special case of Horndeski
gravity. At first, we will investigate simple models where the inflaton is identified with a canonical
scalar field, and therefore we will extend the analysis to some k-essence models whose Lagrangian
contains non-standard higher order kinetic term [33–35].

The paper is organized in the following way. In Section 2, we derive our model from
the Horndeski Lagrangian and we present the field equations on Friedmann–Robertson–Walker
space–time. In Section 3, some inflationary solutions are reconstructed for simple scalar field
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and k-essence non-minimally coupled with the Gauss–Bonnet invariant. Section 4 is devoted to
the analysis of the cosmological perturbations during inflation. Here, the spectral index and the
tensor-to-scalar ratio are calculated. Conclusions are given in Section 5.

We use units of kB = c = h̄ = 1 and 8π/M2
Pl = 1, where MPl is the Planck Mass.

2. The Model

Let us start by considering the following gravitational model,

I =
∫
M

dx4√−g
[

R
2
+ p(φ, X) + ξ(φ)G

]
, X = −

gµν∂µφ∂νφ

2
(1)

whereM is the space–time manifold, g is the determinant of the metric tensor gµν, R is the Ricci scalar
of the Hilbert–Einstein action of General Relativity (GR), p(φ, X) is a function of the scalar field φ and
its kinetic energy X, ξ(φ) is a function of the field only and G is the Gauss–Bonnet four dimensional
topological invariant, namely

G = R2 − 4RµνRµν + Rµνσξ Rµνσξ (2)

Rµν and Rµνσξ being the Ricci tensor and the Riemann tensor, respectively.
The Lagrangian in Equation (1) represents a special case of Horndeski gravity. Horndeski

models [13] are the most general scalar–tensor theories with field equations at the second order (like
in GR) and assume the general form (in vacuum),

I =
∫
M

dx4√−g
[

R
2
+ LH

]
, LH =

5

∑
i=2
Li (3)

where LH collects the Lagrangian of the scalar field φ and higher order corrections to GR coupled
with the field itself,

L2 = P(φ, X) ,

L3 = −G3(φ, X)�φ ,

L4 = G4(φ, X)R + G4,X [(�φ)2 − (∇µ∇νφ)(∇µ∇νφ)] ,

L5 = G5(φ, X)Gµν(∇µ∇νφ)− 1
6

G5,X [(�φ)3 −

3(�φ)(∇µ∇νφ)(∇µ∇νφ) + 2(∇µ∇αφ)(∇α∇βφ)(∇β∇µφ)] (4)

Here, Gµν := Rµν − Rgµν/2 is the usual Einstein’s tensor, while P(φ, X) and Gi(φ, X) with
i = 3, 4, 5 are functions of the scalar field φ and its kinetic energy X. If we set [16]

P(φ, X) = p(φ, X) + 8
d4ξ(φ)

dφ4 X2(3− log X) ,

G3(φ, X) = 4
d3ξ(φ)

dφ3 X(7− 3 log X) ,

G4(φ, X) = 4
d2ξ(φ)

dφ2 X(2− log X) ,

G5(φ, X) = −4
dξ(φ)

dφ
log X (5)
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after integration by part it is possible to recover (1). By making the simple choice p(φ, X) = X, we find
Einstein-dilaton-Gauss–Bonnet (EdGB) gravity. We also note that if ξ(φ) = const, the contribution of
the Gauss–Bonnet disappears.

In general, φ can be identified with a k-essence field whose stress energy-tensor reads [33,34],

Tµ

(φ)ν
= (ρ(φ, X) + p(φ, X))uµuν + p(φ, X)δ

µ
ν , uν =

∂νφ√
2X

(6)

such that p(φ, X) is the effective pressure of k-essence and ρ(φ, X) its energy density,

ρ(φ, X) = 2X
∂p(φ, X)

∂X
− p(φ, X) (7)

Canonical scalar fields correspond to p(φ, X) = X − V(φ), V(φ) being a function of the field
only, but the Lagrangian of k-essence admits a higher order kinetic term.

We will work with flat Friedmann–Robertson–Walker (FRW) metric,

ds2 = −dt2 + a(t)2dx2 (8)

where a ≡ a(t) is the scale factor depending on the cosmological time. Thus,

X =
φ̇2

2
(9)

and the Equations of motion (EOMs) are given by [15,16],

3H2 = ρ(φ, X)− 24H3φ̇
dξ(φ)

dφ
(10)

−(2Ḣ + 3H2) = p(φ, X) + 8H2 d2ξ(φ)

dφ2 φ̇2 + 8
dξ(φ)

dφ
(2H3φ̇ + 2HḢφ̇ + H2φ̈) (11)

where the dot is the derivative with respect to the time. The continuity equation of k-essence follows
from the EOMs and reads

ρ̇(φ, X) + 3H(ρ(φ, X) + p(φ, X)) = 24
dξ(φ)

dφ
φ̇H2(Ḣ + H2) (12)

We note that ρ(φ, X) + p(φ, X) = 2XpX(φ, X) and, on FRW space–time, G = 24H2(H2 + Ḣ). If
we introduce the e-folds number respect to a given time t0, namely

N = log
[

a(t0)

a(t)

]
(13)

and by taking into account that dN = −Hdt, we have from Equations (10) and (12),

3H2 = ρ(φ, X) + 24H4φ′
dξ(φ)

dφ
(14)

− ρ′(φ, X) + 3H2φ′2(pX(φ, X)) = 24
dξ(φ)

dφ
φ′H3(H′ − H) (15)

where the prime index denotes the derivative with respect to N and X = H2φ′2/2. The e-folds is
a useful parameter in inflationary cosmology and, if we identify t0 with the time when acceleration
ends, it measures the rate of expansion of the universe at different times t < ti.
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3. Inflation

The early-time acceleration is realized in a (quasi)-de Sitter space–time when the Hubble
parameter is almost a constant and the field moves slowly. In such a case, Equations (14) and (15)
read, in the slow-roll approximation with |H′/H| � 1, |φ′| � 1 and |φ′′| � |φ′|,

3H2 ' ρ(φ, X) , ρ′(φ, X)− 3H2φ′2 pX(φ, X) ' 24
dξ(φ)

dφ
φ′H4 (16)

By taking t0 in Equation (13) as the time at the end of inflation, and by assuming 0 � N when
accelerated expansion starts, the behavior of the field can be depicted in the following way: when
0 � N, φ � 0, while at N = 0, φ ' 0−, such that φ′ < 0. Since the Hubble parameter decreases
and tends to zero when N approaches to zero, 0 < ρ′(φ, X), while X′ < 0 to permit a graceful exit
from inflation.

We can also introduce the slow-roll parameter

ε =
H′

H
(17)

which is positive and small during the accelerated phase and is of the order of the unit when
acceleration finishes leading to a total e-folds N ≡ N(a(ti)), ti being the initial time of inflation,
large enough to explain the thermalization of the observable universe. To be specific, it must be
55 < N < 65.

Let us consider some examples of simple models reproducing inflation in the considered framework.

3.1. Canonical Scalar Field

In this subsection, we will identify k-essence with a canonical scalar field by posing (see also
Ref. [19]),

p(φ, X) = X−V(φ) , ρ(φ, X) = X + V(φ) (18)

where V(φ) is a function of the scalar field only and the kinetic term is standard. During inflation, for
large and negative values of the field, it must be

X � V(φ→ −∞) (19)

while at the end, when the field tends to vanish,

V(φ→ 0−)� X (20)

At first we will consider the following form of the Hubble parameter,

H2 = H2
0(N + 1) , ε ' 1

2(N + 1)
(21)

with H0 the value of the Hubble parameter at the end of inflation. We easily see that the ε slow-roll
parameter is small when 1 � N, namely H is almost a constant. By taking into account that
−dN/dt = H, in terms of the cosmological time, the solution above corresponds to

H2 =
H4

0
4
(t0 − t)2 (22)



Symmetry 2016, 8, 57 5 of 14

where t0 is the total time of inflation and t = 0 at the beginning of the accelerated phase. Thus,
by making use of the equations in Equation (16) with the slow-roll approximation |H′/H| � 1 and
|φ′′| � |φ′|, one finds

V(φ) ' 3H2
0(N + 1) , φ′ '

−24ξφ(φ)H4 + Vφ(φ)

3H2 (23)

From the second equation, we obtain

φ′2 '
−24ξ ′(φ)H4

0(N + 1)2 + 3H2
0

3H2
0(N + 1)

(24)

The non-minimal coupling ξ(φ) between the field and the Gauss–Bonnet determines the form of
the field and therefore the mechanism of the exit from inflation. Since the field must move slowly, a
realistic scenario may be given by

ξ ′(φ) =
ξ0

(N + 1)2+λ
, ξ(φ) = − 1

(1 + λ)

ξ0

(N + 1)1+λ
, −1 < λ (25)

with |ξ0| ∼ 1/H2
0 generic constant. Here, we remember that we are working with unitary Planck

Mass: by reintroducing the Planck Mass, one has |ξ0| ∼ M2
Pl/H2

0 . and λ a number larger than minus
one. As a consequence,

φ ' φ0 −
(

2
1− λ

)
(N + 1)

1−λ
2

√
−8ξ0H2

0 , −1 < λ < 0 ,

φ ' φ0 − 2
√

1 + N
√
−8ξ0H2

0 + 1 , 0 = λ ,

φ ' φ0 − 2
√

1 + N , 0 < λ (26)

where φ0 < 0 is the value of the field at the end of the accelerated phase, and we require ξ0 < 0. The
explicit reconstruction of the potential leads to

V(φ) ' 3H2
0

[(
2

1− λ

)√
−8ξ0H2

0

] 2
λ−1

(φ0 − φ)
2

1−λ , −1 < λ < 0 ,

V(φ) ' 3H2
0

[
2
√
−8ξ0H2

0 + 1
]−2

(φ0 − φ)2 , 0 = λ ,

V(φ) '
3H2

0
4

(φ− φ0)
2 , 0 < λ (27)

while the relation between the potential and the coupling reads

ξ(φ) = − ξ0

(1 + λ)

[
3H2

0
V(φ)

]1+λ

(28)

and one obtains the explicit form of the Lagrangian. We see that the contribution of the Gauss–Bonnet
significatively enters in the dynamics of inflation only for −1 < λ < 0. In this case, φ′ is larger with
respect to the classical case without GR-corrections, and the field moves faster. We note that at the
end of inflation ξ(φ) ' −ξ0/(1 + λ) ∼ 1/H2

0 , and—when H < H0—the Gauss–Bonnet contribution
disappears at the small curvatures of Friedmann universe.

An other example of viable inflation that we would like to consider is given by

H2 = H2
dS

[
1− 1

(N + 1)

]2
, ε ' 1

(N + 1)2 (29)
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where HdS is the (de Sitter) Hubble parameter when 1� N. Here, the relation between the e-folds N
and the cosmological time is given in an implicit way by

N + log[N] = HdS(t0 − t) (30)

where t0 is the total time of the inflationary expansion. Now one has

V(φ) ' 3H2
dS

[
1− 1

(N + 1)

]2
(31)

and by using the suitable form for the coupling function ξ(φ),

ξ(φ) =
1

(1− λ)

ξ0

(N + 1)λ−1 0 < λ , 1 6= λ , (32)

where |ξ0| ∼ 1/H2
dS is a (negative) constant and λ a positive number, we obtain

φ′2 ' −
8H2

dSξ0

(N + 1)λ
+

2
(N + 1)2 (33)

The following behaviors of the field are inferred:

φ ' φ0 −
(

2
2− λ

)
(N + 1)

2−λ
2

√
−8ξ0H2

dS , 0 < λ < 2 ,

φ ' φ0 −
√
(−8H2

dSξ0 + 2) log(N + 1) , 2 = λ ,

φ ' φ0 −
√

2 log(N + 1) , 2 < λ (34)

with φ0 < 0 the value of the field at the end of inflation again. Thus, the potential may be
reconstructed as

V(φ) = 3H2
0

[
1− 2

(
2

(2− λ)(φ0 − φ)

√
−8ξ0H2

dS

) 2
(2−λ)

]
, 0 < λ < 2

V(φ) = 3H2
dS

[
1− 2e(φ−φ0)/

√
−8H2

dSξ0+2
]

, 2 = λ ,

V(φ) = 3H2
dS

[
1− 2e(φ−φ0)/

√
2
]

, 2 < λ , (35)

and the coupling function between the field and the Gauss–Bonnet results to be

ξ(φ) =
21−λξ0

(1− λ)

[
1− V(φ)

3H2
dS

]λ−1

(36)

At the end of inflation, since the potential goes to zero, we have ξ(φ) ' 21−λξ0/(1 − λ) ∼
±1/H2

dS and the non-GR effects from the Gauss–Bonnet disappear from the Lagrangian.

3.2. k-Essence

In this subsection, we will extend our study to k-essence models, where higher order kinetic term
appears in the Lagrangian. At first, we will consider the model whose Lagrangian is of the form,

p(φ, X) = F(X)−V(φ) (37)
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with F(X) and V(φ) two functions depending on X and φ, separately. The potential V(φ) supports
the de Sitter expansion as long as the magnitude of φ is almost a constant and the “kinetic” part F(X)

makes inflation end when φ′2 increases, such that we must have

F(X)� V(φ→ −∞) , V(φ→ 0−)� F(X) (38)

For example, we may take

F(X) = µXκ , 0 < µ , 1 ≤ κ (39)

with κ , µ positive parameters. For µ = κ = 1, we recover the case of canonical scalar field analyzed
in the preceding subsection. The effective pressure and energy density of k-essence correspond to

p(φ, X) = µXκ −V(φ) , ρ(φ, X) = µ(2κ − 1)Xκ + V(φ) (40)

Thus, in the limit Equation (38), from Equation (16) we get

H2 =
V(φ)

3
, φ′2κ ' 2κ−1

µκH2(κ−1)

[
−8ξ ′(φ)H2 +

V′(φ)
3H2

]
(41)

By assuming Equation (25), where λ is still larger than minus one to satisfy the limit Equation (38),
the solution in Equation (21) can be reconstructed in the following way

φ ' φ0 −Φ0

(
2κ

κ − λ

)
(N + 1)

κ−λ
2κ (−8ξ0H2

0)
1/(2κ) , −1 < λ < 0 ,

φ ' φ0 − 2Φ0
√

1 + N(−8ξ0H2
0 + 1)1/(2κ) , 0 = λ ,

φ ' φ0 − 2Φ0
√

1 + N , 0 < λ (42)

with

Φ0 =

(
2κ−1

µκH2(κ−1)
0

)1/(2κ)

(43)

The corresponding forms of the potential are

V(φ) ' 3H2
0

[
Φ0

(
2κ

κ − λ

)
(−8ξ0H2

0)
1/(2κ)

] 2κ
λ−κ

(φ0 − φ)
2κ

κ−λ , −1 < λ < 0 ,

V(φ) ' 3H2
0

[
2Φ0(−8ξ0H2

0 + 1)1/(2κ)
]−2

(φ0 − φ)2 , 0 = λ ,

V(φ) '
3H2

0
4Φ2

0
(φ− φ0)

2 , 0 < λ (44)

and the coupling between the field and the Gauss–Bonnet results to be as in Equation (28). We observe
that, for the considered inflationary solution Equation (21), in the classical framework of GR (or,
equivalently, if non-GR corrections are negligible), inflation is realized in the same way by canonical
scalar field or k-essence in Equation (39). However, if one considers the Gauss–Bonnet contribution
(this is the case −1 < λ < 0), the dynamics of the field changes, leading to a different exit from the
early-time acceleration.
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In a similar way, for the solution Equation (29) with Equation (32), we derive (1 < κ),

φ ' φ0 −Φ0

(
2κ

2κ − λ

)
(N + 1)

2κ−λ
2κ (−8ξ0H2

dS)
1/2κ , 0 < λ < 2 ,

φ ' φ0 −Φ0

(
κ

κ − 1

)
(−8ξ0H2

dS + 2)1/(2κ)(N + 1)
κ−1

κ , 2 = λ ,

φ ' φ0 −Φ0

(
κ

κ − 1

)
21/(2κ)(N + 1)

κ−1
κ , 2 < λ (45)

where

Φ0 =

(
2κ−1

µκH2(κ−1)
dS

) 1
2κ

(46)

Furthermore, the explicit form of the potential is given by

V(φ) = 3H2
0

[
1− 2

(
2κΦ0

(2κ − λ)(φ0 − φ)
(−8ξ0H2

dS)
1/(2κ)

) 2κ
(2κ−λ)

]
, 0 < λ < 2 ,

V(φ) = 3H2
dS

[
1− 2

(
κΦ0

(κ − 1)(φ0 − φ)
(−8ξ0H2

dS + 2)1/(2κ)

) κ
(κ−1)

]
, 2 = λ ,

V(φ) = 3H2
dS

[
1− 2

(
κΦ0

(κ − 1)(φ0 − φ)
(2)1/(2κ)

) κ
(κ−1)

]
, 2 < λ (47)

and the coupling function between the field and the Gauss–Bonnet reads as in Equation (36). In this
example, we can see that the presence of the higher order kinetic term of k-essence modifies inflation
with respect to the classical canonical scalar field case, even when the contribution of Gauss–Bonnet
is negligible.

Let us now consider the following form of k-essence,

p(φ, X) = g(φ)Xκ −V(φ) , ρ(φ, X) = (2κ − 1)g(φ)Xκ + V(φ) , 1 ≤ κ (48)

where g(φ) and V(φ) are functions of the field and κ is a positive number. When g(φ) = µ, we recover
Equation (39). When the following limits take place

g(φ→ ∞)Xκ � V(φ→ ∞) , V(φ→ 0−)� g(φ→ 0−)Xκ , (49)

equations in (16) read

H2 =
V(φ)

3
, φ′2κ ' 2κ−1

g(φ)κH2(κ−1)

[
−8ξ ′(φ)H2 +

V′(φ)
3H2

]
. (50)

To reproduce the accelerated solution Equation (21), we may assume the following Ansatz:

g(φ) =
µ

(N + 1)σ
, ξ(φ) = − 1

(1 + λ)

ξ0

(N + 1)1+λ
, −1 < λ , 1 6= λ , 0 < σ < λ + κ (51)

where µ is a positive constant, ξ0 a (negative) constant parameter, and σ , λ positive numbers. As a
consequence, the field behaves as
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φ ' φ0 −Φ0

(
2κ

κ + σ− λ

)
(N + 1)

κ+σ−λ
2κ (−8ξ0H2

0)
1/(2κ) , −1 < λ < 0

φ ' φ0 −
(

2κ

κ − σ

)
Φ0(1 + N)

κ−σ
2κ (−8ξ0H2

0 + 1)1/(2κ) , 0 = λ ,

φ ' φ0 −
(

2κ

κ − σ

)
Φ0(1 + N)

κ−σ
2κ , 0 < λ (52)

with

Φ0 =

(
2κ−1

µκH2(κ−1)
0

)1/(2κ)

(53)

The potential reads

V(φ) ' 3H2
0

[
Φ0

(
2κ

κ + σ− λ

)
(−8ξ0H2

0)
1/(2κ)

] 2κ
λ−σ−κ

(φ0 − φ)
2κ

κ−λ+σ , −1 < λ < 0 ,

V(φ) ' 3H2
0

[(
2κ

κ − σ

)
Φ0(−8ξ0H2

0 + 1)1/(2κ)

] 2κ
σ−κ

(φ0 − φ)
2κ

κ−σ , 0 = λ ,

V(φ) ' 3H2
0

[(
2κ

κ − σ

)
Φ0

] 2κ
σ−κ

(φ− φ0)
2κ

κ−σ , 0 < λ (54)

while the coupling between k-essence and Gauss–Bonnet is given by (28).
Finally, the model Equation (48) with Equation (32) and g(φ) as in Equation (51) with σ < λ

reproduces the solution Equation (29) when the field behaves as

φ ' φ0 −Φ0

(
2κ

2κ − λ + σ

)
(N + 1)

2κ−λ+σ
2κ (−8ξ0H2

dS)
1/2κ , 0 < λ < 2 ,

φ ' φ0 −Φ0

(
2κ

2κ − 2 + σ

)
(−8ξ0H2

dS + 2)1/(2κ)(N + 1)
2κ−2+σ

2κ , 2 = λ ,

φ ' φ0 −Φ0

(
2κ

2κ − 2 + σ

)
21/(2κ)(N + 1)

2κ−2+σ
2κ , 2 < λ (55)

with

Φ0 =

(
2κ−1

µκH2(κ−1)
dS

) 1
2κ

(56)

The potential is reconstructed as

V(φ) = 3H2
0

[
1− 2

(
2κΦ0

(λ− σ− 2κ)(φ0 − φ)
(−8ξ0H2

dS)
1/(2κ)

) 2κ
(2κ−λ+σ)

]
, 0 < λ < 2 ,

V(φ) = 3H2
dS

[
1− 2

(
2κΦ0

(2κ − 2 + σ)(φ0 − φ)
(−8ξ0H2

dS + 2)1/(2κ)

) 2κ
(2κ−2+σ)

]
, 2 = λ ,

V(φ) = 3H2
dS

[
1− 2

(
2κΦ0

(2κ − 2 + σ)(φ0 − φ)
(2)1/(2κ)

) 2κ
(2κ−2+σ)

]
, 2 < λ (57)

and the minimal coupling between k-essence and Gauss–Bonnet is given by Equation (36).
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4. Cosmological Perturbations

The cosmological perturbations around FRW metric Equation (8) assume the form [14,15],

ds2 = −[(1 + α(t, x))2 − a(t)−2e−2ζ(t,x)(∂ψ(t, x))2]dt2 + 2∂iψ(t, x)dtdxi + a(t)2e2ζ(t,x)dx (58)

where α(t, x) , ψ(t, x) and ζ ≡ ζ(t, x) are functions of the space–time coordinates. The action (1) can
be rewritten as

I =
∫
M

dx4a3Q
[

ζ̇2 − c2
s

a2 (∇ζ)2
]

, (59)

where

Q =
φ′2

2H2

(
96H4ξ ′2(φ) + pX(φ, X) + φ′2 pXX(φ, X)

)
(60)

and the square of the sound speed reads

c2
s =

pX(φ, X)

pX(φ, X) + 96H4ξ2
φ(φ) + 2pXX(φ, X)X

(61)

In this expressions, we have used the slow-roll approximation in Equation (16). We immediately
see that in GR with classical canonical scalar field c2

s = 1. But here, thanks to non-GR effects and in the
presence of k -essence with 0 < pXX , the square of the sound speed is smaller than one. By defining

v ≡ v(t, x) = z(t)ζ(t, x) , z ≡ z(t) =
√

a3Q (62)

from Equation (59) we infer

v̈k +

(
k2 c2

s
a2 −

z̈
z

)
vk = 0 (63)

where we decomposed v(t, x) in Fourier modes vk ≡ vk(t) whose explicit dependence on k is given
by exp[ikx]. The solution for perturbations in quasi de-Sitter space–time can be derived as [15],

vk(t) ' c0

√
a
2

aH
(csk)3/2 e±ik

∫ cs
a dt
(

1 + icsk
∫ dt

a

)
(64)

where the constant c0 is fixed by the Bunch–Davies vacuum state
vk(t) =

√
a exp[±ik

∫
csdt/a]/(2

√
csκ) in the asymptotic past, such that c0 = i/

√
2. Finally,

ζk ≡
vk√
Aa3

= i
H

2
√

A(csk)3/2
e±ik

∫ cs
a dt
(

1 + icsk
∫ dt

a

)
(65)

and the variance of the power spectrum of perturbations on the sound horizon crossing csκ ' Ha is
given by

PR ≡
|ζk|2k3

2π2 |csk'Ha =
H2

8π2c3
s A
|csk'Ha (66)

The spectral index is evaluated as

1− ns = −
d lnPR

d ln k
|k=aH/cs = 2ε + ηsF + s (67)

where [15],

ε = − Ḣ
H2 , ηsF =

ε̇sF + εs Ḟ
H(εsF)

, s =
ċs

Hcs
, εs =

Qc2
s

F
(68)
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and
F = 1 + 8(2− log[X])Xξφφ(φ) . (69)

In a similar way, the tensor perturbations in flat FRW space–time leads to the tensor-to-scalar ratio,

r = 16csεs . (70)

In terms of the e-folds Equation (13), by taking into account Equation (16), we derive

(1− ns) '
(

φ′
(

3072H6 pXξ ′3 + 24H4ξ ′
(

pX

(
16pXξ ′φ′2 + 8ξ ′′ + pXXφ′4

)
− 12ξ ′p′X

)
+H2

(
16p2

Xξ ′φ′2 + 3p2
X pXXφ′6 + φ′4

(
pX p′XX − 3pXX p′X

))
+2p3

Xφ′4 − 2pX p′Xφ′2
)
− 2pXφ′′

(
288H4ξ ′2 + H2 pXXφ′4 + 2pXφ′2

))
× 1

2pXφ′ (96H4ξ ′2 + H2 pXXφ′4 + pXφ′2)
(71)

and

r '

8pXφ′2
√ pX

96H4ξ′2
φ′2

+H2 pXXφ′2+pX

4H2(2−log(H2φ′2/2))(ξ ′′φ′−ξ ′φ′′)
φ′ + 1

(72)

For canonical scalar field in the background of GR, we recover the classical expressions:

(1− ns) ' φ′2 − 2φ′′

φ′
≡ 3H′

H
− H′′

H′
, r ' 8φ′2 ≡ 16H′

H
(73)

The last Planck satellite data [36] reveal ns = 0.968± 0.006 (68% CL) and r < 0.11 (95% CL). We
see from Equation (70) that in the case of k-essence models minimally coupled with Gauss–Bonnet,
since cs < 1, the tensor-to-scalar ratio can be easily suppressed according with observations. On
the other hand, by posing N ≡ N ' 60 (it corresponds to the total e-folds necessary to have the
thermalization of our universe), it is required that (1− ns) ' 2/N to have a viable scenario.

In the case of canonical scalar model in Equation (18) with potential Equation (27) and coupling
Equation (28), the (quasi)-de Sitter solution Equation (21) leads to the spectral index

(1− ns) '
1 + λ

(1 + N)
, −1 < λ < 0 ,

(1− ns) '
2

(1 + N)
, 0 ≤ λ (74)

The last case corresponds to chaotic inflation in GR with quadratic potential, and the spectral
index is in agreement with Planck data when N ' 60. We note that even if the Gauss–Bonnet
contributes to the solution (this is the case λ = 0), it does not enter in the spectral index. However, in
the case of a pure canonical scalar field with quadratic potential (0 < λ, when the coupling between
field and Gauss–Bonnet is negligible), a simple calculation leads to a tensor-to-scalar ratio slightly
larger than observations—namely, r ' 8/(N + 1) ' 0.13. Thus, if we take 0 = λ, we may introduce
a small correction in the tensor-to-scalar ratio through the Gauss–Bonnet, reducing the sound speed
in Equation (61) and recovering the correct observed value. When −1 < λ < 0, the contribution of
Gauss–Bonnet significatively changes the dynamics of inflation with respect to the classical case, and
the scenario is not viable.
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For the inflationary solution Equation (29) with potential Equation (35) and coupling Equation (36),
we have

(1− ns) '
λ

(1 + N)
, 0 < λ < 2 ,

(1− ns) '
2

(1 + N)
, 0 ≤ λ (75)

We can see that for 0 ≤ λ, the Gauss–Bonnet does not contribute to the spectral index
and inflation is viable (it corresponds to a Starobinsky-like inflation in the Einstein’s frame [37]).
On the other hand, for 0 < λ < 2, the perturbations depend on the coupling between the field and
the Gauss–Bonnet, and we find the Planck data only if λ remains close to two.

For the k-essence models considered in subsection 3.2, we can verify that when the Gauss–Bonnet
does not significatively enter in the dynamics of inflation (namely, when 0 ≤ λ and 2 ≤ λ of solutions
Equations (21) and (29), respectively), the spectral index assumes the same (viable) form of the
canonical scalar field models, such that (1− ns) ' 2/(N + 1). The similarity between canonical fields
and fields with higher order kinetic term seems to remain also in the presence of the Gauss–Bonnet
contribution. For example, in the case of solution Equation (29), when 0 < λ < 2 and independently
of the values of κ and σ, in both of the models Equations (40) and (48), one has λ/(1 + N).

5. Conclusions

In this paper, we investigated solutions for inflation in a class of Horndeski models where the
scalar field representing inflaton is coupled with the Gauss–Bonnet invariant. We considered different
scenarios—namely, canonical scalar field with standard kinetic term and k-essence, where scalar field
with higher order kinetic term is present. The interest in this kind of theories in the context of
early-time inflation is motivated by the fact that one expects that at high curvatures, non-GR effects
modify the theory of Einstein. In the specific, the Gauss–Bonnet invariant plays an important role
in string theory and enters in the trace anomaly (see also Ref. [38–42]). Moreover, k-essence is one
of the possible descriptions for inflation (see also Refs. [43,44]). The advantage for dealing with a
Horndeski model is that—despite the involved form of the Lagrangian—the equations of motion are
at the second order, like in General Relativity.

Different behaviors of the Hubble parameter for early-time acceleration have been analyzed by
making use of a reconstruction technique to infer Lagrangians by starting from the given solutions.
This procedure is quite simple if one expresses all the quantities in terms of the e-folds number, which
measures the amount of inflation. In the last section, we also furnished the formalism to calculate
perturbations in our class of models, deriving the spectral index and the tensor-to-scalar ratio. We
applied and discussed the results of our examples (for a comparison, see also Ref. [45]).

One can further generalize our action where the field is linearly coupled with the Gauss–Bonnet
invariant by considering the coupling of arbitrary Gauss–Bonnet modified gravity with k-essence, in
analogy with similar F(R)-k-essence models analyzed in Ref. [46]. For some other reviews of inflation
in modified gravity, see Refs. [47,48]. Other useful references can be found in Refs. [49–52].
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