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Abstract. A mathematical model of turbulent motion of a non-homogeneous flow is
constructed. Based on the pulsation energy balance method, a closed system of equations is
obtained for calculating the average velocity and turbidity of a non-uniform flow. The calculation
of the pulsation characteristics of the flow with a transverse shift is carried out and the analysis
of the effect of the impurity on the pulsation structure of the turbulent flow and its effect on the
motion of an unmanned aircraft is carried out. Since the safety assessment and service lifetime
of an unmanned aerial vehicle cannot exclude the influence of disturbances in the atmosphere
when calculating characteristics.

1. Introduction
The problem of moving suspended particles in a turbulent flow is of considerable interest, both
from theoretical and practical points of view, due to various technical applications: hydraulic
excavation, movement of sediments in rivers, movement of dust and other gases. As an example,
flight tests are the most reliable method for studying the flight of UAVs but in practice various
methods for analytic studies of the equations of controlled movement UAVs are widely used.
The more mathematically described the studied phenomena and processes, the more difficult
the system of equations of the controlled motion of the aircraft and the more difficult the study
of this system. Therefore, always follow the path of the greatest possible simplification of the
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equations allowed by the task. One of the main factors affecting on the flight dynamics of an
aircraft is that it is exerted by various disturbances, which, as a rule, are turbulent pattern [1].

Particles of loose, solid material carried by water and air currents are collectively called
sediment. They are produced by hydrodynamic forces generated during the flow of liquid or air
environment and their movement in suspension is due to turbulent mixing, usually accompanied
by real flow. The specific gravity of the sediments, except for some special cases, varies within
a small range from 2.2 to 2.6. Their dimensions are assumed to be small enough so that
the probability of maintaining them in suspension is large. This definition of small particles is
conditional because it is closely related to the value of the longitudinal component of the velocity
and intensity of turbulence so that higher values allow larger particles to be suspended. Thus,
the main characteristic of suspensions is not so much the geometric size but the speed of its fall
through the fluid. A particle moving in flow has a net vertical movement due to the difference
between u2 the vertical component of velocity and a the speed of the gravitational falling where
the rate of gravitational settling, a, is called “hydraulic size.”

Basic to the study of the motion of suspended particles is the question of the transport
capacity of the flow, i.e. to calculate, for the hydraulic characteristics of a given flow and
for sediments of a specified size, whether the fluid is able to lift and move the sediment in a
suspended state for a predetermined distance.

Fundamentals of the theory of motion of suspended sediments were laid Velikanov [2, 3]. He
writes : “The whole process of suspended of sediments is closely connected with the turbulence
of the flow, so the level of knowledge about the movement of sediments at a given height is a
problem of turbulence.” So it is natural to use the fluctuating energy balance method to derive
the equations of turbulent motion of suspended particles. The theory, was developed further by
Kolmogorov [4] and Barenblatt [5]. The basic assumption of this theory is the smallness of the
size of the suspended particles (compared to the characteristic scale of the turbulence), suggest
that they form a kind of continuously distributed impurity in the main fluid.

Theory motion of suspended particles in a turbulent flow needs to be developed. As since a
semiempirical theory introduced ideas which may be used in gravitational theory.

In this paper, we present a closed system of equations for the average velocity and turbidity
for inhomogeneous flow on the basis of the single-point second-order moments. We use these
equations to calculate the pulsation characteristics of the shear flow including the analysis of
the influence of impurities on the fluctuating structure of the turbulent flow.

2. General Equations
We will consider the equations motion of non-homogeneous fluid for laminar flow conditions by
following [5]:

∂Ui
∂τ

+ Uk
∂Ui
∂xk

= −1

ρ

∂P

∂xi
+ ν

∂2Ui
∂xk∂xk

− (1 + σS) gi,

∂S

∂τ
+ Uk

∂S

∂xk
= a

∂S

∂x2
,

∂Uk
∂xk

= −aσ ∂S
∂x2

.

(2.1)

Where (x1, x2, x3) are Cartesian coordinates with the x2 axis directed vertically upwards, τ is
the time, Ui are the components of the fluid velocity, S is the relative volume of suspended solids
or turbidity (turbidity - volume concentration), P is the total hydraulic pressure of uniform fluid,
ρ is the fluid density, ν is the kinematic viscosity, σ is the mass of suspended particles, gi are
the components of the acceleration of gravity, and a is the rate of uniform sedimentation of a
single particle in an infinite space filled with fluid and is assumed constant.
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We consider the case of small relative volumes of suspended particles and small mass within
the stream, i.e.

S � 1, σS � 1, σ =
ρ2 − ρ1

ρ
. (2.2)

Where ρ1 is the density of the liquid and ρ1 is the suspended matter, respectively.
The suspended particles in an, on average, horizontal flow, are explained by the presence

of the vertical component of the pulsation of velocity flow. Horizontal laminar flow can not
carry particles if the particles are so large that molecular diffusion can be neglected. It follows
that of special interest for the problem is turbulent motion in an inhomogeneous fluid. In this
case, we use the averaged equations of motion given by replacing the quantities of interest by
their expectation values. The resulting equations in the ergodic hypothesis are approximately
valid for motion characteristics averaged over periods of time which are small compared with
the characteristic time for the mean flow and large compared with the characteristic time of
fluctuations [6, 7].

To move to the averaged equations, we give Ui, P , S as the sum of the averaged and pulsation
components [6, 7]:

Ui = U i + ui; S = S + s; P = P + p. (2.3)

We substitute these values in equations (2.1). In that case we obtain the equation for the
mean and fluctuating components of velocity (sign averaging below discarded, where we have
defined ∂k ≡ ∂

∂xk
):

∂τU i + Uk∂kU i + ∂k 〈uiuk〉 = −1

ρ
∂iP + ν∇2U i −

(
1 + σS

)
gi − aσ 〈ui∂2s〉 , (2.4)

∂τui + Uk∂kui + uk∂kU i + ∂k [uiuk − 〈uiuk〉] = −1

ρ
∂ip+ ν∇2ui − aσ [ui∂2s− 〈ui∂2s〉]− σsgi,

(2.5)

the equation for the mean and the fluctuating components of suspended matter:

∂τS + Uk∂kS + ∂k 〈uks〉 = a∂2S −
aσ

2
∂2
〈
s2
〉
, (2.6)

∂τs+ Uk∂ks+ uk∂kS + ∂k [uks− 〈uks〉] = a∂2s−
aσ

2
∂2
[
s2 −

〈
s2
〉]
, (2.7)

the equation of continuity for the mean and fluctuating velocity:

∂kUk = −aσ∂2S,
∂kuk = −aσ∂2s.

(2.8)

As in [6, 7, 8], in order to close the system of equations (2.4)-(2.8) we will use the equations
for the single-point second-order moments of velocity fields and turbidity fields. The equation
for the fluctuating component of velocity uj will be written similar to the equation (2.5). Then
multiply both sides of equation (2.5) on uj , and both sides of the equation for uj - on ui. After
we sum up these two equations and as a result, after averaging and transformation, we obtain
the equation for the velocity correlation:
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∂τ 〈uiuj〉+ Uk∂k 〈uiuj〉+ 〈ukuj〉 ∂kUi + 〈uiuk〉 ∂kUj = ∂k

[
ν∂k 〈uiuj〉 − 〈uiujuk〉 −

〈
(δjkui + δikuj)

p

ρ

〉]
+

〈
p

ρ
(∂iuj + ∂jui)

〉
− 2ν 〈∂kui∂kuj〉 − σg (δi2 〈suj〉+ δj2 〈sui〉)− 2aσ 〈uiuj∂2s〉 ,

(2.9)

Multiplying equation (2.5) on s and multiplying equation for s (2.7) on ui. After we sum up
these two equations and as a result, after averaging, we obtain the equation for the correlation
of suspended matter:

∂τ 〈sui〉+ Uk∂k 〈sui〉+ 〈uks〉 ∂kUi + 〈ukui〉 ∂kS

= ∂k

[
ν∂k 〈uis〉 − 〈uiuks〉 −

〈
p

ρ
s

〉
δik

]
+

〈
p

ρ
∂is

〉
− 2ν 〈∂ks∂kui〉 − σgδi2

〈
s2
〉

+ a 〈ui∂2s〉 ,

(2.10)

the equation for the mean-square fluctuation of turbidity obtained from (2.7) will have the form:

∂τ

〈
s2

2

〉
+ Uk∂k

〈
s2

2

〉
+ 〈uks〉 ∂kS = ∂k

[
ν∂k

s2

2
−
〈
uk
s2

2

〉]
+ a∂2

〈
s2

2

〉
. (2.11)

3. The main hypotheses
We now use the main hypotheses of Kolmogorov-Rotta [8, 9, 10, 11] and their analogues for the
relative volume of suspended particles in developed turbulent flow:〈

p

ρ
(∂jui + ∂iuj)

〉
= −k

√
E

l

(
〈uiuj〉 −

2

3
δijE

)
,〈

p

ρ
∂is

〉
= −ks

√
E

l
〈uis〉 ,

2ν 〈∂kui∂kuj〉 =
2

3
δijc

E
3
2

l
,

2ν 〈∂kui∂ks〉 = 0

E =
1

2

(〈
u21
〉

+
〈
u22
〉

+
〈
u23
〉)
.

(3.1)

Here k, ks, and c are empirical constants [7, 9, 10] (the evaluation of which is given below), E is
the kinetic energy of the pulsation motion of fluid, l has the dimensions of length (displacement
path).

We will assume that the structure close to isotropic turbulence [7] so that in the

〈ui∂2s〉 = 0. (3.2)

Since
〈
s2
〉
< S and σ < 1 we also have,

∂2

〈
s2

2

〉
<< ∂2S. (3.3)
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In order to find a semi-empirical algebraic representation of the quantity ∂2 < s2 > we note
that the characteristics of the turbulent flow depend on the averaged fluctuation of energy E,
the value of length l, and is gradient of velocity U2. Also, it is clear that the gradient of

〈
s2
〉

is

proportional to the size of
〈
s2
〉

itself and has a negative sign since the turbidity, as well as its
mean square fluctuation, decrease with increasing height. The simplest assumption that satisfies
the above considerations is

l2∂2u∂2 < s2 >= −cs
√
E
〈
s2
〉
, (3.4)

where cs is the only empirical constant related to the presence of impurities in the stream.
Further, we will assume that the inhomogeneous flow is a fully developed turbulent flow,

also we will neglect the third-order moments and the transfer of any substance pressure
pulsations. This allows us to drop the diffusion terms from equations (2.9)-(2.11) as evidenced
by experimental data, which show that substantial diffusion ripple currents only occur near the
axis [7]. Furthermore, we will assume that the inhomogeneous fluid is pure shear, ie. u = U(y),
w = v = 0, S = S(y). Finally, we obtain the system for the average velocity and volume
concentration:

∂k 〈−uiuk〉+ (1 + σS) gi = 0,

∂k 〈−suk〉 − a∂2S = 0.
(3.5)

The system of equations of one-point second-order moments (2.9)-(2.11) with (3.1) can be
written as follows:

∂τ 〈uiuj〉+ 〈ukuj〉 ∂kUi + 〈uiuk〉 ∂kUj + k

√
E

l

(
〈uiuj〉 −

2

3
δijE

)
+

1

3
cδij

E
3
2

l
+ σg (δ2j 〈sui〉+ δi2 〈suj〉) = 0,

∂τ 〈sui〉+ 〈uks〉 ∂kUi + 〈ukui〉 ∂kS + ks

√
E

l
〈uis〉+ σgδi2

〈
s2
〉

= 0,

∂τ

〈
s2

2

〉
+ 〈uks〉 ∂kS − a∂2

〈
s2

2

〉
= 0.

(3.6)

Thus, (3.5) and (3.6) are the basic equations of a mathematical model for the turbulent
motion of an inhomogeneous fluid under sufficiently general assumptions about the nature of
the movement.

4. Calculation of pulsation characteristics developed turbulent flow of an
inhomogeneous fluid.
We will consider turbulent flow of an inhomogeneous fluid, as noted earlier, we assume pure
shear. To calculate the pulsation characteristics we separate equation (3.6) into components,
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where we define (x1, x2, x2)→ (x, y, z) and (u1, u2, u3)→ (u, v, w):

〈uv〉 ∂U
∂y

+
k

2

√
E

l

(〈
u2
〉
− 2

3
E

)
+

1

3
c
E

3
2

l
= 0,

k

2

√
E

l

(〈
v2
〉
− 2

3
E

)
+

1

3
c
E

3
2

l
+ σg 〈sv〉 = 0,

k

2

√
E

l

(〈
w2
〉
− 2

3
E

)
+

1

3
c
E

3
2

l
= 0,

〈
v2
〉 ∂U
∂y

+
k

2

√
E

l
〈uv〉+ σg 〈su〉 = 0,

〈vw〉 ∂U
∂y

+
k

2

√
E

l
〈uw〉 = 0,

k

2

√
E

l
〈vw〉 = 0,

〈vs〉 ∂U
∂y

+ 〈vu〉 ∂S
∂y

+ ks

√
E

l
〈us〉 = 0,

〈
v2
〉 ∂S
∂y

+ ks

√
E

l
〈vs〉+ σg

〈
s2
〉

= 0,

〈vs〉 ∂S
∂y

+ acs

√
E

l2 ∂U∂y

〈
s2
〉

= 0.

(4.1)

Empirical constants are not associated with the inhomogeneity of the fluid, and their
determination is a matter of pure fluid in the flow. Therefore, we will assume that the conditional
suspension has the same density as the fluid, i.e. σ = 0. In that case, the system of equations
(4.1) allows us to express all the relative second-order moments of the velocity field and the
volume concentration through the gradient of velocity, the gradient of turbidity, scale of length
and empirical constants:

〈
u2
〉
0

=
2

3

(
1 + 2

c

k

) 1

c
2
3

(
l
∂U

∂y

)2

,

〈
v2
〉
0

=
〈
w2
〉
0

=
2

3

(
1− c

k

) 1

c
2
3

(
l
∂U

∂y

)2

,

〈−uv〉0 =

(
l
∂U

∂y

)2

,

E0 =
1

c
2
3

(
l
∂U

∂y

)2

,

〈−sv〉0 =
k

ks

(
l2
∂U

∂y

∂S

∂y

)
,

〈su〉0 =
c
1
3

ks

(
1 +

k

ks

)(
l2
∂U

∂y

∂S

∂y

)
,

k

ks
l2
∂U

∂y

(
∂S

∂y

)2

= acs
1

c
1
3

〈
s2
〉
l
,

〈
s2
〉
0

=
k

ks

1

csa
l2
∂U

∂y

(
∂S

∂y

)2

.

(4.2)
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Note that the solutions (4.2) contain all the pulsation characteristics of the turbulent flow
for homogeneous fluid and denoted by the subscript ”0”. The numerical coefficient of the
expressions 〈−uv〉0 in (4.2) is equal to unity, since the sheer scale of hypotheses (4.1) is defined
up to a constant factor. Such ideas used in [7,9,10], and these ideas allow us to express both
empirical constants k and c in one k

c = 7, i.e. we will reduce the number of experimental
constants.

In order to determine the effect of particulate matter in the stream on the pulsation
characteristics, the solutions of (4.1) easily will be found in the form of two factors M = M0ψ
(M0 coincides with the solution (4.2), ψ reflects the influence of impurities). Thus, ψ should be
determined by a parameter of interaction, where ψ(0) = 1.

We will now confine ourselves to < uv > and < sv > the expression needed to calculate the
velocity and turbidity of the medium.

〈−uv〉 =

(
l
∂U

∂y

)2

ψ4, 〈−sv〉 =
k

ks

(
l2
∂U

∂y

∂S

∂y

)
ψ5, (4.3)

Where ψi, ψ4, ψ5 - functions of pulsating motion, which take into account the effect of (impurity)
suspension. Then the solutions (4.2) can be written as follows:

E = E0ψ,
〈
u2
〉

=
〈
u2
〉
0
ψ1,

〈
v2
〉

=
〈
v2
〉
0
ψ2,

〈
w2
〉

=
〈
w2
〉
0
ψ3,

〈uv〉 = 〈uv〉0 ψ4, 〈vs〉 = 〈vs〉0 ψ5, 〈su〉 = 〈su〉0 ψ6,
〈
s2
〉

=
〈
s2
〉
0
ψ7.

(4.4)

Substituting these solutions into equation (4.1) we obtain a system of algebraic equations for
the function ψi:

− ψ4 +
α

3

√
ψ

[(
1 +

2

α

)
ψ1 − ψ

]
+

1

3
ψ

3
2 = 0,

α

3

√
ψ

[(
1− 1

α

)
ψ2 − ψ

]
+

1

3
ψ

3
2 − Ri

σT
ψ5 = 0,

α

3

√
ψ

[(
1− 1

α

)
ψ3 − ψ

]
+

1

3
ψ

3
2 = 0,

ψ2 −
√
ψψ4 +

c
3
2

kks

(
1− 1

σT

)
Riψ6 = 0,

1

σT
ψ5 + ψ4 =

(
1 +

1

σ

)√
ψψ6,

ψ2 −
√
ψψ5 +

1

ω
Riψ7 = 0,

ψ5 =
√
ψψ7

Ri = −σg Sy
U2
y

, ω = kscs
a

c
2
3 lUy

, α =
k

c
.

(4.5)

Ri is the dimensionless parameter is analogous to the Richardson number and represents
a measure of the influence of impurities. If the flow is homogeneous or contains a uniformly
distributed mixture, then the number Ri = 0 and the function ψ must be equal to one ψ = 1.
The parameter ω is the ratio of the speed of gravitational sedimentation to the dynamic speed,
α is the empirical constant [7, 9, 10, 11]. We will express the function ψi in terms of ψ, the
parameters of interaction, and the empirical constants:
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ψ1 = ψ +
Ri

σ(α+ 2)

ψ

ψ + Ri
ω + 3Ri

σ(α−1)

,

ψ2 =
ψ2 + Riψ

ω

ψ + Ri
ω + 3Ri

σ(α−1)

,

ψ3 = ψ

ψ4 = ψ
3
2

Ri
σ ψ

3
2

ψ + Ri
ω + 3Ri

σ(α−1)

,

ψ5 =
ψ

3
2

ψ + Ri
ω + 3Ri

σ(α−1)

,

ψ6 =
ψ

(σ + 1)

1 +Ri

ψ + Ri
ω + 3Ri

σ(α−1)

,

ψ7 =
ψ2

ψ + Ri
ω + 3Ri

σ(α−1)

.

(4.6)

ψ is then determined from the equation:

ψ2 + ψ

[
Ri

σ

(
σ

ω
+

9

2(α− 1)
+ 1

)
− 1

]
+

3Ri2

2σ2(α− 1)

[
1

Ri
+ 1 +

σ

ω
+

3

α− 1

]
− Ri

ω
= 0. (4.7)

which can be written in the form:

ψ =
1

2

[
−B +

√
B2 − 4C

]
,

B =
Ri

σ

(
σ

ω
+

9

2(α− 1)
+ 1

)
− 1,

C =
3Ri2

2σ2(α− 1)

[
1

Ri
+ 1 +

σ

ω
+

3

α− 1

]
− Ri

ω
.

(4.8)

Thus, we have found all of the functions ψi for the single-point second-order moments. In
Figures 1, 2, and 3 we present the results of the numerical calculation for the basic functions of
pulsatile motion. As with the experimental data [7, 12] we see from Figures 1, 2, 3 that changes
occur due to the action of Ri, the Richardson number and the parameter ω.

From the expression (4.8) it is clear that ψ will vanish for a particular combination of
parameters. This means that at a certain limit or critical value Ri∗ of the Richardson number,
the parameter ω∗ is suppressed in pulsatile motion. These values are determined from the
expression for ψ = 0:

Ri∗ =
α− 1

3

2σ2 (α− 1)− ω
σ (α− 1) + ω∗ (α+ 2)

. (4.9)

If ω << 1,the settling velocity of particles is small, the critical Ri∗ becomes

Ri∗ =
2

3
(α− 1) ≈ 3. (4.10)

For ω →∞, i.e. very large suspended particles, there is almost instantaneous suppression of
the turbulent motion:

Ri∗ → 0. (4.11)
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Figure 1. Distribution for the function ψ in turbulent fluctuations at different values of
the Richardson number Ri and ω the parameter of suspended particles with ω = 0.5, 1, 1.5
respectively.

Figure 2. Distribution of the pulsating movement function ψ4 at different Ri and the parameter
ω = 0.5, 1, 1.5 respectively.

Figure 3. Distribution of the function ψ5 according to Ri and ω = 0.5, 1, 1.5 respectively.
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5. Conclusion
The paper presents a mathematical model of turbulent motion of a non-uniform flow, which
satisfies general assumptions about the nature of motion, because the method of turbulent
pulsations is based on measurements of gas concentrations and three-dimensional wind speed,
and flows are calculated based on these measurements. The equations of the closed system for
the average velocity and turbidity are obtained on the basis of the equations for the second-
order single-point moments. In addition, a numerical calculation of the shear flow pulsation
characteristics was performed and an analysis of the effect of impurities on the pulsation structure
of the turbulent flow and its effect on the motion of an UAVs was given. When various factors
are affected by the UAVs (condition of indeterminacy, nonlinear aerodynamic parameters, the
pattern of elastic vibrations of the structure, effects and interference in the atmosphere) arising
from a relatively low flight speed, the UAVs are very sensitive to disturbances: atmospheric
turbulence, movements of suspended particles in turbulent flow, etc. In the atmosphere of
atmospheric turbulence, due to the interaction between the UAV and the air flow during the
flight, a number of flexural-torsional vibrations occur, which leads to the destruction of the UAV
design [13, 14].
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