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Abstract In this paper,we investigate the mathematical modeling for the cosmological
attractors propagated in mimetic gravity upon which an interacting dark energy-dark matter
is supposed to be existed. The average value of the interaction of these percentages, namely
�i say, may be used to investigate generally the modeling of an attractor; the actual value
could only be determined by data in any particular case. We have seen, for example, that it
was led to investigate the subject of initially invariant submanifolds.
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1 Introduction

In many passages of our studies on large scale structure of the whole Universe, observa-
tional data had distinctly stated that the current epoch of Universe which it dominated here
give an explanation of the acceleration expansion of the Universe. Namely the data from
supernovae SNe Ia [1, 2], cosmic microwave background radiations via WMAP [3], galaxy
redshift surveys via SDSS [4] and galactic X-ray [5]. But only the means of observing and
connecting them together with theory; that the meaning of all phenomena, and the reason of
their peculiar connexions, was a philosophical problem which required to be attacked from
a different point of view; and that the significance especially which lay in the phenomena of
matter contents and exotic form of it would only unfold itself if by an exhaustive survey of
the entire fully theoretical description, individually, consistently, and physically, we gain the
necessary data for deciding what meaning attaches to the existence of this current accelera-
tion expansion, or dark energy (DE) and dark matter (DM) in the contents of the universe.
DE is considered as an exotic matter with negative effective pressure to energy density ratio
in a very recent epoch z ∼ 0.7. The existence of such type of energy brings two important
unsolved problems: The fine tuning and cosmic coincidence. Perhaps the best candidates for
DE are the quintessence scalar field or a phantom energy field [6]. The geometrical modi-
fications of Einstein gravity are also interesting and have been studied widely in literatures
[7–12]. In the case, however, of many observatories [13–19], especially as regards the older
records, many data for interacting DE-DM exist; further, the decay of DE to the DM and
unparticle is at best only an approximation [20, 21], the success attending which probably
varies considerably at different stations [22]. When the continuity equations are satisfied for
different types of matter(energy) contents with interaction terms, a phase space description
is found to be useful [23–25]. In this approach we present, a suitable multidimensional rep-
resentation of a first order dynamical system in which each dimension corresponds to one
density of the system. Thus, a point of phase space corresponds to a specific state of the
system, and a path represents the evolution of the density functions of the system through
different states. Our aim in this letter is to perform phase space description for an interacting
DE-DM system in a type of modified gravity, called as mimetic gravity (MG).

2 Basic Equations

Another opportunity to solve DE problem will present a type of disformal invariant the-
ory, where we might be identified with a specific reparametrization of the metric gμν =
(g̃αβ∂αφ∂βφ)g̃μν [26]:

S = −1

2

∫
d4x

√
−g(g̃μν,φ)

{
R[gμν(g̃μν, φ)]

κ2
+ Lm

}
, (1)

Here we suppose that g̃μν represents an auxiliary metric and φ denotes an auxiliary (non
ghost)scalar field. Such type of modified gravity recently has been studied from different
points of view [27–36]. Derivation of the field equations are straightforward. If we vary the
action (1) with respect to the metric gμν and the scalar field we obtain the following set of
field equations:

(Gμν − κ2T μν) − (G − κ2T )gμαgνβ∂αφ∂βφ = 0, (2)

1√−g
∂κ [√−g(G − κ2T )gκλ∂λφ] = ∇κ [(G − T )∂κφ] = 0, (3)
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The acceleration expansion of Universe in standard cosmology may be attributed to a
homogenous and isotropic FLRW metric in the following form:

ds2 = dt2 − a(t)2dx2. (4)

The set of FLRW Equations can be obtained using (2, 3) for metric (4):

3H 2 = κ2ρeff = κ2
(
3ptot − R

κ2

)
(5)

2Ḣ = −κ2peff == κ2
(
4ptot − R

κ2

)
(6)

here ptot = �3
i=1pi = �3

i=1wiρi .
We assume the matter contents are composed by three component fluid containing matter

ρm, dark energy ρd and radiation ρr . We suppose that these components are interacting
with an unknown set of interction fuctions �i . The corresponding continuity equations for
three components can be written in the following system:

ρ̇d + 3H(ρd + pd) = �1,

ρ̇m + 3Hρm = �2,

ρ̇r + 3H(ρr + pr) = �3, (7)

To preserve the total continuty, the interaction functions must satisfy collectively such that
�1 + �2 + �3 = 0. To define an autonomous dynamical system , it is needed to define
dimensionless density parameters via the following set of new variables:

x ≡ κ2ρd

3H 2
, y ≡ κ2ρm

3H 2
, z ≡ κ2ρr

3H 2
. (8)

Using the FLRW Eqs we can calculate the following important quantity:

Ḣ

H 2
= −3

(
�3

a=1waxa + 1

2

)
. (9)

here xa = (x, y, z). We change time coordinate from t to the N = ln a. Using (9), we
rewrite the continuity equations (7) in following autonomous system in the dimensionless
variables:

dx

dN
= −3x (wd − 2(wdx + wrz)) + κ2�1

3H 3
, (10)

dy

dN
= 6y(wdx + wrz) + κ2�2

3H 3
, (11)

dz

dN
= −3z (wr − 2(wdx + wrz)) + κ2�3

3H 3
, (12)

we shall assume wm = 0, wr = 1
3 and −1 ≤ wd < − 1

3 .
The coupling functions �i , i = 1, 2, 3 are considered as phenomenological general func-

tions of the energy densities ρi and the Hubble parameter H i.e. �i(Hρi). If we forego this
assumption, the form of interaction term is �i ∼ �bHρ or �i ∼ �H−1ρaρn. In strict-
ness the interaction term � must be supposed to act upon the coordinates (8) in its actual
condition, whereas in (10–12), previously cited, the system is supposed to be absolutely
autonomous.
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3 Analysis of Stability in Phase Space

In this phase space approach it is assumed that the system (10–12) is autonomous, and this
assumption is sufficiently accurate for any practical purpose to which the above systems
would be applicable in the ordinary analysing of a local stability point. But this was based
upon the assumption of a density-H relation between interaction terms, the interaction func-
tion �i of which depended on their relative densities ρi as well as on Hubble parameter H .
This being the case, we are at liberty to make the assumption that the interaction function
of each term in (10–12) (under specified conditions) is known, without thereby introducing
any risk of self-contradiction in mathematical calculations. This assumption has the great
advantage, that the last interaction terms in (10–12) now appears as the autonomous term
of the components (x, y, z). Four models are specified for our dynamical system which we
will study the local stability points using them [23].

3.1 Interacting Model - I

The first model has the following interaction terms:

�1 = −6bHρd, �2 = �3 = 3bHρd, (13)

The model to be considered in a scenario in which dark energy will decay into matter and
radiation. The parameter b > 0 represents decay rate.

Using (13), the system (10–12) we obtain:

dx

dN
= −3x (wd − 2(wdx + wrz)) − 6bx

dy

dN
= 6y(wdx + wrz) + 3bx,

dz

dN
= −3z (wr − 2(wdx + wrz)) + 3bx, (14)

The stationary or critical points are the solutions by equating the left hand sides of (30–31)
to zero. That assumption would create the possibility of the existence of stable point, that
is, of any critical point of the system. The possible solutions and the eigenvaluesλ of the
linearized system d �y

dN
= A�y near these points (i.e. when �X = �Xc + �Y , || �Y || � || �Xc||), as

the solutions for the vector equation A �V = λ �V , are classified as the following:

• A1: �Xc = (0, 0, 0), λi = {0, −3/2wr −3/2wd −3 b−3/2|−2 b−wd +wr |,−3/2wr −
3/2wd − 3 b + 3/2| − 2 b − wd + wr |}

• B1: �Xc = (0, 0, 1/2), λi = {1, 1 − 3/2wd − 3 b − 3/2 |wd + 2 b|, 1 − 3/2wd − 3 b +
3/2|wd + 2 b|}.

• C1:

xc = −wrwd + wd
2 + 4 bwd − 2 bwr + 4 b2

2(−wrwd + wd
2 + 2 bwd − bwr)

(15)

yc = − b (2 b − wr + wd)

2(−wrwd + wd
2 + 2 bwd − bwr)

(16)

zc = − b (wd + 2 b)

2(−wrwd + wd
2 + 2 bwd − bwr)

(17)
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λi = {3wd +6b, 3wd +6b, 6 b+3wd −1}. The following theorem helped us to classify
the critical points:
Theorem: The point �Xc is asymptotically stable for the system (10–12) if the real part
of every eigenvalue is negative. It is unstable if any eigenvalue has a positive real part.
We conclude that the points A1, B1 are unstable, while the point C1 can be a stable
(unstable) degenerate node.

The density functions functions (x, y, z), phase portrait and the effective EoS are shown
numerically in the following Figs. 1, 2, 3, in which the parameters are taken as the
wd = −0.7, b = 0.5; the solutions for density functions are those determined by numerical
algorithms, and the effective EoS weff follow by calculation in the manner explained for
(30–31).

3.2 Interacting Model - II

The second model of interaction is given by the following terms:
�1 = −3bHρd, �2 = 3bH(ρd − ρm), �3 = 3bHρm. (18)

The DE was a loss anyway, but the radiation would be increased. Field equations can be
written in the following forms:

dx

dN
= −3x (wd − 2(wdx + wrz)) − 3bx

dy

dN
= 6y(wdx + wrz) + 3b(x − y),

dz

dN
= −3z (wr − 2(wdx + wrz)) + 3by, (19)

Fig. 1 Model I: Solutions x(N), y(N), z(N) for wd = −0.7, b = 0.5. Solid x(N), dot y(N) and dash z(N)
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Fig. 2 Model I: Phase space for wd = −0.7, b = 0.5. It shows an attractor behavior

When we solved the Equations dxa

dN
= 0, we obtained all critical points, eigenvalues of the

linearized system:

• A2: {x = 0, y = 0, z = 0}, λi = {−1, −3b, −3(wd + b). It may be considered in the
system as a stable point.

• B2: {x = 0, y = 0, z = 1/2}, λi = {1, 1 − 3b, 1 − 3(wd + b)}. This point is unstable.
• C2: {x = 0, y = −(3/2)b + 1/2, z = (3/2)b}, λi = {3b, 3b − 1, −3wd}. This critical

point is also unstable.
• D2:

x = −wd − 3w2
d − 3bwd

6w2
d + 2b − 2wd

,

y = −−b + 3bwd + 3b2

6w2
d + 2b − 2wd

,

z = 3b2

6w2
d + 2b − 2wd

. (20)

λ1 = 3wd, λ2 = 3(wd + b), λ3 = −1 + 3(wd + b). (21)

This critical point can be considered as unstable if wd < −b.

Numerical solution, is obtained by imposing suitable IC and parameters into (19). In
Fig. 4 we see an increasing form for radiation while the DE is decreased as well as DM.

An cosmological latetime attractor is detected in Fig. 5.
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Fig. 3 Model I: Effective EoS weff = wdx+wrz
x+y+z

for wd = −0.7, b = 0.5

Effective EoS is computed numerically. As we observe in Fig. 6, the EoS weff > −1.
So, the model can be considered as a cosmological ciable model for interacting DE-DM.

Fig. 4 Model II: Solutions x(N), y(N), z(N) for wd = −0.7, b = 0.5. Solid x(N), dot y(N) and dash z(N)
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Fig. 5 Model II: Phase space for wd = −0.7, b = 0.5. It shows an attractor behavior

3.3 Interacting Model - III

A third model which we’ll consider is a scenario in which DE is decayed but DM and
radiation are increasing:

�1 = −6bκ2H−1ρdρr , �2 = �3 = 3bκ2H−1ρdρr . (22)

Fig. 6 Model II: Effective EoS weff = wdx+wrz
x+y+z

for wd = −0.7, b = 0.5
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The appropriate form of the dynamical system is taken as follows:

dx

dN
= −3x (wd − 2(wdx + wrz)) − 18bxz,

dy

dN
= 6y(wdx + wrz) + 9bxz,

dz

dN
= −3z (wr − 2(wdx + wrz)) + 9bxz, (23)

The stationary points and the corresponding critical points for (23) are given as the
following:

• A3:{0, 0, 0}, λi = {0, −1, −3d}. This point is unstable.
• B3: {x = 0, y = 0, z = 1/2}, λi = {−3wd + 1 − 9b, 1, 1}. This point is also

unstable.
• C3: {x = 1/2, y = 0, z = 0}, λi = {−1+3wd + (9/2)b, 3wd, 3wd}. This critical point

can be stable if −1 + 3wd + (9/2)b < 0.
• D3:

x = − −3wd + 1 − 9b

81b2 + 54bwd − 9b
,

y = −−18w2
d − 81bwd − 2 + 12wd − 81b2 + 27b

162b2 + 108bwd − 18b
,

z = −−2wd + 6w2
d + 9bwd

54b2 − 6b + 36bwd

. (24)

and eigenvalues:

λ1 = 3wd

9b + 6wd − 1
, (25)

λ2 = 9 bwd + √
3�

6b (9 b + 6wd − 1)
(26)

λ3 = 9 bwd − √
3�

6b (9 b + 6wd − 1)
. (27)

here

�2

bwd

= −1377 bwd + 4860 b2wd + 2592wd
2b

+432wd
3 + 96wd − 360wd

2 − 1296 b2 + 180 b − 8 + 2916 b3. (28)

There is (un)stablity for this critical point.

In Fig. 7 a numerical solution is developed for density function(s). All types of the densities
are decaying.
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Fig. 7 Model III: Solutions x(N), y(N), z(N) for wd = −0.7, b = 0.5. Solid x(N), dot y(N) and dash
z(N)

An attractor which was started from an initial point is observed in Fig. 8. An affective
EoS with range weff ≤ −0.5 is drawn in Fig. 9.

Fig. 8 Model III: Phase space for wd = −0.7, b = 0.5. It shows an attractor behavior
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Fig. 9 Model III: Effective EoS weff = wdx+wrz
x+y+z

for wd = −0.7, b = 0.5

3.4 Interacting Model - IV

An alternative form of interaction is defined by the following:

�1 = −3bκ2H−1ρdρr ,

�2 = 3bκ2H−1(ρdρr − ρmρr),

�3 = 3bκ2H−1ρmρr . (29)

The corresponding dynamical system is written in the following form:

dx

dN
= −3x (wd − 2(wdx + wrz)) − 9bxz,

dy

dN
= 6y(wdx + wrz) + 9bz(x − y),

dz

dN
= −3z (wr − 2(wdx + wrz)) + 9byz, (30)

Critical points and the eigen values are obtained as the following:

• A4: {x = 0, y = y, z = 0}, λi = {0, −1, −3wd}. This is an unstable point.
• B4: {x = 0, y = 0, z = 1/2}, λi =

{
1, 1 − 9b

2 , 1 − 9b
2 − 3wd

}
. This point is also

unstable.
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Fig. 10 Model IV: Solutions x(N), y(N), z(N) for wd = −0.7, b = 0.5. Solid x(N), dot y(N) and dash
z(N)

• C4: {x = 1/2, y = 0, z = 0}, λi = {3wd − 1, 3wd, 3wd}. The point here is stable.
• D4:

x = 1

9b
, y = 1

9b
, z = −wd

3b
(31)

we have a cubic equation for determining eigenvalues as a function of the absolute
cosmological parameters {b,wd}:

λ3 − 3wdλ2 − 2wd (−1 + 3wd)

3b
λ

+ wd
2 (−4 + 9 b + 6wd)

b
= 0 (32)

This cubic Eq. can be solved by quadratures. For b > 0, wd < 0, it is possible to
numerically show that one eigenvalue always is positive λ3 > 0. So the system is
unstable.

• E4:

x = − 1

18

2 − 9b − 6wd

b
,

y = −27wdb + 18w2
d − 9b − 12wd + 2

−18b + 81b2
,

z = −−6w2
d + 2wd

−6b + 27b2
. (33)
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Fig. 11 Model IV: Phase space for wd = −0.7, b = 0.5. It shows an attractor behavior

eigen values:

λ3 − 18wd (−1 + 3 b + wd)

−2 + 9 b
λ2 + Aλ + B = 0. (34)

Fig. 12 Model IV: Effective EoS weff = wdx+wrz
x+y+z

for wd = −0.7, b = 0.5
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here

3Aw−1
d (−2 + 9 b)2 b = −8 − 324 b2 − 72wd

2 + 72 b

+48wd − 972wdb2y + 4374wdb3y + 972wd
3b + 1458wd

2b2

−648wd
2b − 486wdb2 − 1458 b3y + 324 b2y + 729 b3 (35)

−B (−2 + 9 b)2 b (−1 + 3wd)−1 wd
−2

= −108 b + 8 − 216wdby + 972wdb2y + 216wd
3

+324wd
2b − 486wdb2

+1458 b3y − 144wd
2 + 108wdb − 648 b2y

+72 by − 729 b3 + 486 b2 (36)

The eigenvalues has at least one positive real number λ+ > 0. So the system is still
unstable.

In Fig. 10 a numerical solution is developed for density function(s). All types of the densities
are decaying.

An attractor which was started from an initial point is observed in Fig. 11.
An affective EoS with range weff ≤ −0.5 is drawn in Fig. 12.

4 Conclusion

The final achievement of modified gravity in this direction was the extension of the method
of the disformal transformations of the metric of arbitrary dimensions, successfully used
by authors in the investigation of cosmological as well as of gravitational equalities, to any
system whatever of mutually interacting components like dark energy and dark matter. We
further supposed that the dark components are interacting like fluids, but each perceiving
what was passing in the other, and acting in consequence by interaction term �i . This letter
was the first to investigate and describe in mimetic gravity the fact that a cosmological
solution at a distance had the power of invariance from initial condition to final state, and it
also found that in some interacting cases the stable submanifold was produced.
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