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Mimetic gravity is a Weyl-symmetric extension of General Relativity, related to the latter by a singular disformal transformation,
wherein the appearance of a dust-like perfect fluid can mimic cold dark matter at a cosmological level. Within this framework,
it is possible to provide a unified geometrical explanation for dark matter, the late-time acceleration, and inflation, making it a
very attractive theory. In this review, we summarize the main aspects of mimetic gravity, as well as extensions of the minimal
formulation of the model. We devote particular focus to the reconstruction technique, which allows the realization of any desired
expansionary history of the universe by an accurate choice of potential or other functions defined within the theory (as in the case
of mimetic𝑓(𝑅) gravity).We briefly discuss cosmological perturbation theory withinmimetic gravity. As a case study within which
we apply the concepts previously discussed, we study amimetic Hořava-like theory, of which we explore solutions and cosmological
perturbations in detail. Finally, we conclude the review by discussing static spherically symmetric solutions within mimetic gravity
and apply our findings to the problem of galactic rotation curves. Our review provides an introduction to mimetic gravity, as well
as a concise but self-contained summary of recent findings, progress, open questions, and outlooks on future research directions.

1. Introduction

The past decade has seen the astounding confirmation of the
“dark universe” picture, wherein the energy budget of our
universe is dominated by two dark components: dark matter
and dark energy [1–50]. The race to determine the nature
and origin of these components is in progress on both the
observational and theoretical fronts. Theories of modified
gravity appear quite promising in this respect, particularly
given that gravity remains the least understood of the four
fundamental forces. For an incomplete list of comprehensive
reviews, as well as seminal works on the subject, we refer the
reader to [51–68] and references therein.

A particularly interesting theory of modified gravity
which has emerged in the past few years is mimetic gravity
[69]. In mimetic gravity, as well as minimal modifications
thereof, it is possible to describe the dark components of the
universe as a purely geometrical effect, without the need of
introducing additional matter fields. In the past three years,

interest in this theory has grown rapidly, with over 90 papers
following up on the original idea or at least touching on it
in some way [70–161]. For this reason, we believe it is timely
to present a review on the progress achieved thus far in the
field ofmimetic gravity.This review is not intended to provide
a detailed pedagogical introduction to mimetic gravity but
rather summarize themain findings and directions in current
research on the theory, as well as providing useful directions
to the reader, should she/he wish to deepen a given topic
in mimetic gravity. For this reason, this review should not
be seen as a complete introduction to mimetic gravity, nor
should it substitute consultation of the original papers. No
prior knowledge on the subject is assumed.

This review is structured as follows: in this section we will
provide a historical and technical introduction to modified
gravity, which shall justify our subsequent endeavour in
mimetic gravity. In Section 2, we will introduce mimetic
gravity. Given that understanding the reason behind the
equations of motion of mimetic gravity differing from those
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of General Relativity is not obvious, a major goal of the
section will be to provide a clear and concise explanation
for this fact. Subsequently, in Section 3 we will explore a
few solutions of mimetic gravity and correspondingly some
extensions of the theory, as well as correspondences with
related theories of modified gravity. Section 4 will provide a
brief interlude focusing on perturbations in mimetic gravity.
In Section 5 we will present a case study of a mimetic-like
model, namely, mimetic covariant Hořava-like gravity, with
a focus on its solutions and cosmological perturbations, and
the need to extend the model beyond its basic formulation.
Section 6 will be devoted to studying spherically symmetric
solutions in mimetic gravity. In Section 7 we will touch upon
the issue of rotation curves in mimetic gravity and how this
issue is addressed. Finally, we will conclude in Section 8.

1.1. Why Modify General Relativity? General Relativity (GR
henceforth), first formulated by Einstein in 1915 [162–166]
(for a pedagogical review, see, e.g., [167]), is an extremely
successful and predictive theory, and together with Quantum
Field Theory forms one of the pillars of modern physics. The
traditional picture of GR is a geometrical one, with the theory
being one of space-time and its metric. A more modern view
is free of geometrical concepts and sees GR as the unique
theory of massless spin-2 particles.

Confirmations of GR abound (see, e.g., [168] for a
complete review), ranging from gravitational lensing [169]
to the precession of Mercury’s orbit [165]. Shortly after its
centennial in 2015 one of the pillars of GR, the existence of
gravitational waves, was grandiosely confirmed by the detec-
tion of GW150914 [170] and GW151226 [171] by LIGO (see
also [172]). Before we even embark on a review of mimetic
gravity, then, it is worth reminding the reader why one should
even consider questioning a theory as successful as GR.
Aside from the philosophical perspective that questioning
theories and exploring other approaches are a sensible route
in science, provided of course that there is agreement with
observations, hints persist in the literature that complicating
the gravitational action may indeed have its merits. In fact,
the reader should be reminded that as early as 1919 (four years
after GR had been formulated), proposals started to be put
forward as to how to extend this theory, notably, in the formof
Weyl’s scale independent theory [173] and Eddington’s theory
of connections [174].These early attempts to modify GRwere
driven solely by scientific curiositywith no formal theoretical,
or let alone experimental, motivation.

Nonetheless, theoretical motivation for modifying the
gravitational action came quite soon. The underlying reason
is that GR is nonrenormalizable and thus not quantizable in
the way conventional Quantum FieldTheories are quantized.
However, it was proven that 1-loop renormalization requires
the addition of higher order curvature terms to the Einstein-
Hilbert action. In fact, it was later demonstrated that, while
actions constructed from invariants quadratic in curvature
are renormalizable [175], the addition of higher order time
derivatives which follows from the addition of terms higher
order in the curvature leads to the appearance of ghost
degrees of freedom, which entail a loss of unitarity. More
recent results show that when quantum corrections or string

theory are taken into account, the effective low-energy
gravitational action admits higher order curvature invariants
(see, e.g., [176] for a general review). However, all these early
attempts to modify GR had a common denominator in the
fact that terms which modified the gravitational action were
only considered to be relevant in proximity of the Planck
scale, thus not affecting the late universe.

With the emergence of the “dark universe” picture in
recent years, the limits of GR have been fully exposed, and
further motivations to modify this theory have emerged.
A series of experiments and surveys, including but not
limited to CMB experiments, galaxy redshift surveys, clus-
ter surveys, supernovae surveys, lensing experiments, and
quasar surveys, have depicted a peculiar picture of our
universe [1–50]. This scenario suggests that our näive picture
of the world we live in being described by the Standard
Model of Particle Physics (SM) supplemented by General
Relativity is, at best, incomplete.The concordance cosmology
model suggests a scenario where only ∼4% of the energy
budget of the universe consists of baryonic matter, whereas∼24% consists of nonbaryonic dark matter (DM), and the
remaining ∼76% consists of dark energy (DE). Of the last
two extra components, dark matter is (presumably) the one
with properties most similar to ordinary matter. It shares the
clustering properties of ordinary matter, but not its couplings
to SM gauge bosons (e.g., electromagnetic ones), and is
believed to be responsible for structure formation during
the matter domination era of the cosmological history. As
ordinary matter, DM satisfies the strong energy condition.
Dark energy, instead, is more peculiar still, given that it
does not share the clustering properties of ordinary matter
or DM, as it violates the strong energy condition. It is
believed to be responsible for the late-time speed-up of
the universe, which has been inferred from a variety of
cosmological and astrophysical observations, ranging from
type Ia-supernovae to the CMB. Whereas evidence for DE
is somewhat indirect and exclusively of cosmological origin,
clues as to the existence of DM are instead present on a wide
variety of scales, from cosmological to astrophysical (galactic
and subgalactic) ones. For technical reviews on DM, see,
for instance, [177–181]; for similar reviews on DE, see, for
instance, [182–186].

The late-time acceleration of our universe, however, is
most likely not the only period of accelerated expansion
that our universe has experienced. A period of accelerated
(exponential) expansion during the very early universe, prior
to the conventional radiation andmatter domination epochs,
is required to solve the horizon, flatness, andmonopole prob-
lems. This period of accelerated expansion is known as infla-
tion (see, e.g., [187–196] for pioneering work), and a vast class
of models attempting to reproduce such period exists in the
literature (for an incomplete list, see, e.g., [197–206] and ref-
erences therein, see also, e.g., [207–231] for more recent infla-
tionarymodel-building which is extremely closely relevant to
mimetic gravity and variations of it). For reviews on inflation,
see, for instance, [232–236]. Inflation also purports to be the
mechanism generating primordial inhomogeneities which
are quantum in origin [237, 238], providing the seeds which
grow under gravitational instability to form the large-scale
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structure of the universe. The fact that the universe presum-
ably undergoes acceleration at both early and late times or,
equivalently, at high and low curvature is very puzzling and
might be hinting to a more profound structure.

It thus appears that concordance cosmology requires at
least three extra (possibly dark) cosmological components:
one or more dark matter components, some form of dark
energy, and one or more inflaton fields. There is no shortage
of ideas as to what might be the nature of each of these
components. Nonetheless, adding these three or more com-
ponents opens another set of questions, which include but
are not limited to the compatibility with the current SM and
the consistency of formulation. On the other hand, gravity
is the least understood of the four fundamental interactions
and the most relevant one on cosmological and astrophysical
scales. If so, it could be that our understanding of gravity
on these scales is inadequate or incomplete, and modifying
our theory of gravitation could indeed be the answer to the
dark components of the universe. One could argue that this
solution is indeed more economical and possibly the one
to pursue in the spirit of Occam’s razor. In other words,
modifications to Einstein’s theory of General Relativity might
provide a consistent description of early and late-time accel-
eration and of the dark matter which appears to pervade the
universe. Modified theories of gravity not only can provide
a solution to the “dark universe riddle” but also possess a
number of alluring features such as unification of the various
epochs of acceleration and deceleration (matter domination)
of the universe’s evolution, transition from nonphantom to
phantom phase being transient (and thus without Big Rip),
solution to the coincidence problem, and also interesting
connections to string theory.

Having presented some motivation to modify our theory
of gravitation, we now proceed to briefly discuss systematic
ways by means of which this purpose can be achieved.

1.2. How toModify General Relativity? Essentially all attempts
to modify General Relativity are guided by Lovelock’s theo-
rem [239]. Lovelock’s theorem states that the only possible
second-order Euler-Lagrange expression obtainable in 4D
space from a scalar Lagrangian density of the form L =
L(𝑔𝜇]), where 𝑔𝜇] is the metric tensor, is given by the
following:

𝐸𝜇] = 𝛽√−𝑔(𝑅𝜇] − 12𝑔𝜇]𝑅) + 𝜅√−𝑔𝑔𝜇], (1)

where𝛽 and 𝜅 are constants and𝑅𝜇] and𝑅 are the Ricci tensor
and scalar, respectively. It follows that constructing metric
theories of gravity whose equations differ from those of GR
requires at least one of the following to be satisfied:

(i) Presence of other fields apart from or in lieu of the
metric tensor

(ii) Work in a number of dimensions different from 4
(iii) Accept metric derivatives of degree higher than 2 in

the field equations
(iv) Giving up locality or Lorentz invariance

Therefore, we can imagine broadly classifying the plethora
of modified gravity theories according to which of the above
assumptions is broken.

1.2.1. New Degrees of Freedom. Relaxing the first assumption
leads to what is probably the largest class of modified gravity
theories. Theories corresponding to the addition of scalar
degrees of freedom include quintessence (e.g., [240–242])
and coupled quintessence (e.g., [243]) theories, the Chern-
Simons theory (e.g., [244]), Cuscuton cosmology (e.g., [245–
247]), Chaplygin gases (e.g., [248, 249]), torsion theories such
as 𝑓(𝑇) theories (e.g., [250–253], see also, e.g., [254–264] for
recent work) or the Einstein-Cartan-Sciama-Kibble theory
(e.g., [265–268]), scalar-tensor theories (e.g., [269]) such as
the Brans-Dicke theory [270], ghost condensates (e.g., [271]),
galileons (e.g., [272, 273]), KGB [274], Horndeski’s theory
[275], and many others.

One can instead choose to add vector degrees of freedom,
as in the case of the Einstein-aether theory (e.g., [276–280]).
The addition of a vector field leads to the introduction of
a preferred direction in space-time, which entails breaking
Lorentz invariance.

Theories where tensor degrees of freedom are added
include Eddington-Born-Infeld gravity (e.g., [281–284]) and
bimetric MOND (e.g., [285, 286]) among others. TeVeS
(tensor vector scalar gravity, [287]) is instead a theory which
features the addition of all three types of degrees of freedom
together.

Broadly speaking, mimetic gravity belongs to the class
of theories of modified gravity where an additional scalar
degree of freedom is added. Caution is needed with this
identification though because, as we shall see later, mimetic
gravity does not possess a proper scalar degree of freedom,
but rather a constrained one.

1.2.2. Extra Dimensions. Relaxing the second assumption
instead brings us to consider models with extra dimensions,
the prototype of which is constituted by Kaluza-Kleinmodels
(e.g., [288–290]). Models of modified gravity with extra
dimensions abound when considering string theory, includ-
ing Randall-Sundrum I [291] and II [292] models, Einstein-
Dilaton-Gauss-Bonnet gravity (e.g., [293, 294]), cascading
gravity (e.g., [295–298]), and Dvali-Gabadadze-Porrati grav-
ity (e.g., [299, 300]). Another interesting theory that falls
within the extra dimension category is represented by 2T
gravity [301].

1.2.3. Higher Order. The most famous and studied example
of a theory falling within this category is undoubtedly
represented by 𝑓(𝑅) gravity ([302], see also, e.g., [60, 65–
67, 303–309] or [310] for black holes phenomenology). In
fact, unification of inflation and late-time acceleration was
proposed in the context of 𝑓(𝑅) gravity in [303, 305, 311–
313]. Belonging to the same family are also variations of the
former such as 𝑓(𝑅𝜇]𝑅𝜇]), 𝑓(◻𝑅), 𝑓(𝑅, 𝑇), 𝑓(𝑅, 𝑇, 𝑅𝜇]𝑇𝜇])
gravity (see, e.g., [132, 314–323]), but also Gauss-Bonnet (see,
e.g., [324–334]) and conformal gravity (see, e.g., [335–337]).
Another well-known theory which lies within this family is
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represented by Hořava-Lifshitz gravity ([338], see also [339–
363], which also violates Lorentz invariance explicitly), and
correspondingly the vast category of Hořava-like theories,
including those which break Lorentz invariance dynamically
(e.g., [356, 361, 362, 364–372]).

1.2.4. Nonlocal. If we choose to relax the assumption of
locality (we have already seen cases where the assumption
of Lorentz invariance is relaxed above), we can consider
nonlocal gravity models whose action contains the inverse
of differential operators of curvature invariants, such as𝑓(𝑅/◻) and 𝑓(𝑅𝜇]◻−1𝑅𝜇]) gravity (e.g., [373–377]). Some
degravitation scenarios belong to this family as well (e.g.,
[378, 379]).

Broadly speaking, mimetic gravity belongs to the class of
theories ofmodified gravity where an additional scalar degree
of freedom is added. Caution is needed with this identifi-
cation though because mimetic gravity does not possess a
proper scalar degree of freedom. Instead, the would-be scalar
degree of freedom is constrained by a Lagrange multiplier,
which kills all higher derivatives. As such, the mimetic field
cannot have oscillating solutions and the sound speed satis-
fies 𝑐𝑠 = 0, confirming that there is no propagation of scalar
degrees of freedom (however, this is true only in the original
mimetic model but does not necessarily hold in extensions
thereof). Furthermore, the same Lagrange multiplier term
introduced a preferred foliation of space-time, which breaks
Lorentz invariance (although this is preserved at the level of
the action).These aspects ofmimetic gravity will be discussed
in more detail in the following section.

2. Mimetic Gravity

The expression “mimetic dark matter” was first coined in a
2013 paper by Chamseddine and Mukhanov [69] although,
as we shall see later, the foundation for mimetic theories
had actually been developed a few years earlier in three
independent papers [380–382]. In [69], the proposed idea
is to isolate the conformal degree of freedom of gravity by
introducing a parametrization of the physical metric 𝑔𝜇] in
terms of an auxiliary metric 𝑔𝜇] and a scalar field 𝜙, dubbed
mimetic field, as follows:

𝑔𝜇] = −𝑔𝜇]𝑔𝛼𝛽𝜕𝛼𝜙𝜕𝛽𝜙. (2)

From (2) it is clear that, in such a way, the physical metric is
invariant under conformal transformations of the auxiliary
metric of the type 𝑔𝜇] → Ω(𝑡, x)2𝑔𝜇], Ω(𝑡, x) being a
function of the space-time coordinates. It is also clear that,
as a consistency condition, the mimetic field must satisfy the
following constraint:

𝑔𝜇]𝜕𝜇𝜙𝜕]𝜙 = −1. (3)

Thus, the gravitational action, taking into account the
reparametrization given by (2) now takes the form:

𝐼 = 12 ∫M 𝑑4𝑥√−𝑔 (𝑔𝜇], 𝜙) [𝑅 (𝑔𝜇], 𝜙) + 2L𝑚] , (4)

where M is the space-time manifold, 𝑅 ≡ 𝑅(𝑔𝜇], 𝜙) is the
Ricci scalar,L𝑚 is the matter Lagrangian, and 𝑔 ≡ 𝑔(𝑔𝜇], 𝜙)
is the determinant of the physical metric.

By varying the action with respect to the physical metric
one obtains the equations for the gravitational field. However,
this process must be done with care, for the (variation of the)
physical metric can be written in terms of the (variation of
the) auxiliary metric and the (variation of the) mimetic field.
Taking this dependency into account, variation of the action
with respect to the physical metric yields [69]

𝐺𝜇] − 𝑇𝜇] + (𝐺 − 𝑇) 𝜕𝜇𝜙𝜕]𝜙 = 0, (5)

where 𝐺𝜇] = 𝑅𝜇] − 𝑔𝜇]𝑅/2 is the Einstein tensor, with𝑅𝜇] being the Ricci tensor, while 𝐺 (= −𝑅) and 𝑇 are the
trace of Einstein’s tensor and the stress-energy tensor of
matter, respectively. Notice that the auxiliary metric does
not enter the gravitational field equation explicitly, but only
through the physical metric, whereas the mimetic field enters
explicitly. In fact, the mimetic field contributes to the right-
hand side of Einstein’s equation through an additional stress-
energy tensor component:

�̃�𝜇] = − (𝐺 − 𝑇) 𝜕𝜇𝜙𝜕]𝜙. (6)

We note that both energy-momentum tensors, 𝑇𝜇] and �̃�𝜇],
are covariantly conserved, that is, ∇𝜇𝑇𝜇] = ∇𝜇�̃�𝜇] = 0 (with∇𝜇 the covariant derivative), whereas the continuity equation
for �̃�𝜇] with the mimetic constraint (3) leads to

∇𝜅 ((𝐺 − 𝑇) 𝜕𝜅𝜙) ≡ 1√−𝑔𝜕𝜅 (√−𝑔 (𝐺 − 𝑇) 𝑔𝜅𝜎𝜕𝜎𝜙)
= 0.

(7)

Finally, the trace of (5) is found to be

(𝐺 − 𝑇) (1 + 𝑔𝜇]𝜕𝜇𝜙𝜕]𝜙) = 0. (8)

It is clear that the above is automatically satisfied if one takes
into account (3) even if 𝐺 ̸= 𝑇. Thus, the theory admits
nontrivial solutions and the conformal degree of freedom
becomes dynamical even in the absence of matter (𝑇 = 0 but𝐺 ̸= 0) [69].

Let us examine the structure of the mimetic stress-energy
tensor. Recall that the stress-energy tensor of a perfect fluid
whose energy density is 𝜌 and pressure 𝑝 is given by

𝑇𝜇] = (𝜌 + 𝑝) 𝑢𝜇𝑢] + 𝑝𝑔𝜇],
𝑢𝜇𝑢𝜇 = −1. (9)

Notice that the mimetic stress-energy tensor in (6) assumes
the same form of the one of a perfect fluid with pressure𝑝 = 0 and energy density 𝜌 = −(𝐺 − 𝑇), while the gradient
of the mimetic field, 𝜕𝜇𝜙, plays the role of 4-velocity. Thus,
the mimetic fluid is pressureless, suggesting it could play the
role of dust in a cosmological setting. To confirmwhether the
mimetic fluid can indeed play the role of dust, it is necessary
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to investigate cosmological solutions. In fact, this is easy
to do on a Friedmann-Lemaı̂tre-Robertson-Walker (FLRW)
setting, with a metric of the form:

𝑑𝑠2 = −𝑑𝑡2 + 𝑎 (𝑡)2 𝑑x2, (10)

where 𝑎 ≡ 𝑎(𝑡) is the scale factor. If we take the hyper-
surfaces of constant time to be equal to those of constant𝜙, we immediately see that the constraint equation (3) is
automatically satisfied if the mimetic field is identified with
time up to an integration constant (which we arbitrarily set
to 0). Thus, the mimetic field plays the role of “clock” on an
FLRW background. It is then easy to show that (7) implies
that (𝐺 − 𝑇), which corresponds to the energy density of
the mimetic stress-energy tensor, decays with the scale factor
of the FLRW universe as (𝐺 − 𝑇) ∝ 1/𝑎3. Recall that the
energy density of a componentwith equation of constant state
parameter 𝑤 evolves as 𝑎−3(𝑤+1) in an FLRW universe, and
hence the evolution in the energy density of the mimetic field
corresponds to 𝑤 = 0, namely, the equation of state for dust.
In other words, the conformal degree of freedom of gravity
can mimic the behaviour of dark matter at a cosmological
level, hence the name “mimetic dark matter” [69].

Lagrange Multiplier Formulation. Before further discussing
some fundamental aspects of mimetic dark matter (or
mimetic gravity henceforth), such as the reason behind the
different solutions from GR despite the seemingly innocuous
parametrization given by (2), let us discuss an alternative
but equivalent formulation of mimetic gravity.The equations
of motion obtained from the action written in terms of
the auxiliary metric 𝑔 are equivalent to those one would
conventionally obtain from the action expressed in terms of
the physical metric with the imposition of an additional con-
straint on the mimetic field. This suggests that the mimetic
constraint given by (3) can actually be implemented at the
level of the action by using a Lagrange multiplier. That is, the
action for mimetic gravity (4) can be written as

𝐼 = 12 ∫M 𝑑4𝑥√−𝑔 [𝑅 + 𝜆 (𝑔𝜇]𝜕𝜇𝜙𝜕]𝜙 + 1) + 2L𝑚] . (11)

Variation of the Lagrangian with respect to the Lagrange
multiplier field 𝜆 leads to (3), while variation with respect to
the physical metric 𝑔𝜇] yields

𝐺𝜇] − 𝑇𝜇] + 𝜆𝜕𝜇𝜙𝜕]𝜙 = 0, (12)

whose trace, when one takes into account (3), is given by

𝜆 = (𝐺 − 𝑇) . (13)

Thus, one recovers (5) again. In this review, we will always
make use of the action given by (11) to introduce the mimetic
field.

A remark is in order here. Actions such as (11) had actually
been introduced three years before the term “mimetic dark
matter”was first coined.Three independent papers in 2010, by
Lim et al. [380], Gao et al. [381], and Capozziello et al. [382],
respectively, presented models with two additional scalar

fields, one of which playing the role of Lagrange multiplier
enforcing a constraint on the derivative of the other (see
also [383] for recent work on the role of Lagrange multiplier
constrained terms in cosmology). In fact, it was shown that
these types ofmodels can produce a unified theory describing
dark energy and dark matter, because the term inside the
Lagrange multiplier can always be arranged in such a way
to reproduce the conventional expansion history of ΛCDM.
Thus, it is fair to state that mimetic theories had actually seen
birth prior to the 2013 paper byChamseddine andMukhanov.

2.1. Understanding Mimetic Gravity. Before we can make
further progress in exploring solutions in mimetic gravity,
generalizing the theory, or studying connections to other
theories, we need to touch on two very important points:
first, why the seemingly innocuous parametrization given
by (5) has led to a completely new class of solutions not
contemplated byGR, and second, whether the theory is stable
or not. As we shall see, the first point can ultimately be
explained in terms of singular disformal transformations.

It might appear puzzling at first that, only by rearranging
parts of the metric, one is faced with a different model alto-
gether. A first explanation appeared in [70], which explained
this property in terms of variation of the action taking
place over a restricted class of functions. This is the case in
mimetic gravity, precisely because the consistency equation
(3) enforces an additional condition for any admissible
variation of the action, in particular demanding that

∫𝑡fin
𝑡in

𝑑𝑡√Ω (𝑥) = (𝑡fin − 𝑡in) , Ω (𝑥) ≡ 𝑔𝛼𝛽𝜕𝛼𝜙𝜕𝛽𝜙. (14)

Thus, for a spatially homogeneous mimetic field 𝜙 = 𝑡,̇𝜙 = √Ω. Varying over a restricted class of functions now
provides less conditions for the stationarity of the action and
hence more freedom in the dynamics. This is a well-known
property relevant when one makes derivative substitutions𝑥 ≡ 𝑓( ̇𝑦) into an action 𝐼(𝑥, 𝑡): the class of functions over
which the variation is admissible does not only comprise
those forwhich the variation of𝑥 is vanishing at the boundary
but also those where the integral of the variation of 𝑥 is zero.
This extra restriction leads to less conditions for stationarity
of the action and the appearance of additional dynamics with
respect to the original case.

Another explanation was presented in [71], which iden-
tified mimetic gravity as a conformal (Weyl-symmetric)
extension of GR. The first important point to notice is that
the parametrization 𝑔𝜇] = 𝑔𝜇](𝑔𝜇], 𝜙) is noninvertible even
for fixed 𝜙, owing to the fact that the map 𝑔 → 𝑔, 𝜙 is a map
from ten variables to eleven. With this parametrization, the
theory is manifestly conformally invariant, that is, invariant
with respect to transformations of the auxiliary metric (and
correspondingly the action 𝐼) of the form:

𝜕𝛼𝑔𝜇] (𝑥) = 𝛼 (𝑥) 𝑔𝜇] (𝑥) ,
𝜕𝛼𝐼 [𝑔𝜇] (𝑔𝜇], 𝜙)] = 0, (15)

where 𝛼(𝑥) is a function of the space-time coordinates. Two
immediate corollaries of the theory’s conformal invariance
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are its yielding of identically traceless equations of motion for
the gravitational field and requiring conformal gauge fixing.
In fact, recall that the equation of motion for the gravitational
field (5) is automatically traceless if the consistency condition
given by (3) is satisfied. Therefore, we can identify (3) with
the conformal gauge condition in the locally gauge-invariant
theory with action 𝐼[𝑔𝜇](𝑔𝜇], 𝜙)]. Mimetic gravity can thus be
seen as a conformal extension of GR which is Weyl-invariant
in terms of the auxiliary metric 𝑔𝜇]. However, this theory
is quite different from the off-shell conformal extensions of
GR proposed in [384] (which preserves GR on-shell but
modifies its effective action off-shell); here the gravitational
action is already modified at a classical level, by adding an
extra degree of freedom provided by a collisionless perfect
fluid. This additional degree of freedom, which can mimic
collisionless cold dark matter for cosmological purposes,
arises from gauging out local Weyl invariance.

2.1.1. Singular Disformal Transformations. As we anticipated
above, mimetic gravity and the appearance of the extra
degree of freedom which can mimic cosmological dark
matter are rooted into the role played by singular disformal
transformations. As was shown by Bekenstein [385], because
GR enjoys invariance under diffeomorphisms, one is free to
parametrize a metric 𝑔𝜇] in terms of a fiducial metric 𝑔𝜇]
and a scalar field 𝜙. The map between the two is defined as
a “disformal transformation,” or a “disformation,” and takes
the following form:

𝑔𝜇] = A (𝜙, 𝑋) 𝑔𝜇] +B (𝜙,𝑋) 𝜕𝜇𝜙𝜕]𝜙, (16)

where 𝑋 ≡ 𝑔𝜇]𝜕𝜇𝜙𝜕]𝜙. The functions A and B are referred
to as conformal factor and disformal factor, respectively. In
general the functions A(𝜙, 𝑋), B(𝜙, 𝑋) are arbitrary, with
A ̸= 0. It is easy to show that, provided the transformation is
invertible, the equations of motion for the theory (obtained
by variation of the action with respect to 𝑔𝜇] and 𝜙) reduce
to those of obtained by varying with respect to the metric 𝑔𝜇]
[79].

To make progress, it is useful to contract the two equa-
tions of motion with 𝑔𝜇] and 𝜕𝜇𝜙𝜕]𝜙. Although we will not
perform the steps explicitly, it is easy to show that this leads
to the following two equations of motion:

Ω(A − 𝑋𝜕A𝜕𝑋) − 𝜔𝑋𝜕B𝜕𝑋 = 0,
Ω𝑋2 𝜕A𝜕𝑋 − 𝜔(A − 𝑋2 𝜕B𝜕𝑋 ) = 0,

(17)

where the two quantitiesΩ and 𝜔 are defined as

Ω ≡ (𝐺𝜇] − 𝑇𝜇]) 𝑔𝜇],
𝜔 ≡ (𝐺𝜇] − 𝑇𝜇]) 𝜕𝜇𝜙𝜕]𝜙. (18)

The determinant of system (17) is given by

det = 𝑋2A 𝜕𝜕𝑋 (B + A𝑋) . (19)

If the above is nonzero, it is trivial to obtain that the resulting
set of equations consists of Einstein’s equation (𝐺𝜇] = 𝑇𝜇])
and a second empty equation. Therefore, the theory does not
feature new solutions with respect to GR [79].

The situation is quite different if the determinant in
(19) is zero, which corresponds to the physical case when
the disformal transformation given by (16) is noninvertible
or singular. In this case, being the function A ̸= 0, this
immediately determinesB, which is of the form:

B (𝑋, 𝜙) = −A (𝑋, 𝜙)𝑋 +E (𝜙) , (20)

where E(𝜙) ̸= 0 is an arbitrary function. We will not show
the steps explicitly, which are instead discussed in detail in
Section IV of [79], but it is not hard to obtain the equations
of motion and notice that they differ from those of GR,
due to the presence of an extra term on the right-hand
side of Einstein’s equation (i.e., an additional contribution
to the stress-energy tensor). Therefore, when the disformal
transformation is singular, one is facedwith the appearance of
extra degrees of freedom which result in equations of motion
differing from those of GR [79].

The parametrization (5) defining mimetic gravity can be
identifiedwith a singular disformal transformation, withA =𝑋 andB = 0 in (16), and correspondingly E = 1 in (20). In
general, when the relation defined by (20) exists between the
conformal factorA and the disformal factorB, the resulting
disformal transformation is singular and, as a result, the
system possesses additional degrees of freedom, explaining
the origin of the extra degree of freedom in mimetic gravity
which mimics a dust component. This aspect has been at
the center of a number of studies recently; see, for instance,
[79, 90, 96, 102, 104, 107, 128, 140, 142, 386–389]. Moreover,
[104] has shown that the two approaches towards mimetic
gravity (and further extensions to be discussed later, such
as mimetic Horndeski theories), namely, Lagrange multiplier
(11) and singular disformal transformation (16), are in fact
equivalent.

2.1.2. Mimetic Gravity from the Brans-Dicke Theory. There
actually exists a third route to mimetic gravity, apart from
disformal transformations and Lagrange multiplier, whose
starting point is the singular Brans-Dicke theory. Namely, by
starting from the action (4) (neglecting matter terms) and by
performing the conformal transformation given by (5), we
end up with the action [129]:

𝐼 (𝑔, 𝜙) = ∫𝑑4𝑥√−𝑔(𝑋𝑅 (𝑔) + 32
𝑔𝜇]𝜕𝜇𝑋𝜕]𝑋𝑋 ) , (21)

where we have defined 𝑋 ≡ 𝑔𝜇]𝜕𝜇𝜙𝜕]𝜙/2. One immediately
sees that (21) corresponds to the singular/conformal Brans-
Dicke action [270] with density parameter 𝜔 = −3/2. Thus,
we conclude that a third way of obtaining mimetic gravity is
by substituting the kinetic term in lieu of the scalar field in
the singular Brans-Dicke action [129]. In casematter fields are
included, the substitution has to be performed on the matter
part of the Lagrangian as well, which means that matter will
not be coupled to 𝑔𝜇] but to 2𝑋𝑔𝜇] [129].
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2.2. Stability. Is mimetic gravity stable? In other words, does
its spectrum contemplate the presence of states with negative
norm, or fields whose kinetic term has the wrong sign (cor-
responding to negative energy states), which could possibly
destabilize the theory? This is an important question which
has yet to find a definitive answer. Recall that the original
mimetic theories formulated in 2010 were found to suffer
from a tachyonic instability [390]; therefore, the question of
whether mimetic gravity is stable is totally pertinent.

If we formulate the theory of mimetic gravity using the
physical metric 𝑔𝜇], we inevitably incur into the risk of
the appearance of higher derivatives of the mimetic field,
which could entail the emergence of ghosts. Addressing this
question requires performing a Hamiltonian analysis of the
theory, identifying all constraints and counting the local
degrees of freedom. A preliminary analysis of this problem
was conducted in [71], which concluded that the theory is
stable if the energy density of the mimetic field 𝜖 = 𝑇 −𝐺 = 𝑇 + 𝑅 is positive. This condition is, of course, easy
to understand physically. Moreover, it indicates a preference
for de Sitter-type backgrounds with a positive cosmological
constant, since in that case both contributions to the energy
density, given by curvature and trace of the matter stress-
energy tensor, are positive. Therefore, it is presumed that
mimetic is gravity is stable provided the time evolution of the
system preserves the positivity of the energy density stored
in the mimetic degree of freedom. The work of [71] also
identified another possible instability issue, namely, caustic
singularities (which are not dangerous at the quantum level,
unlike ghost instabilities). These are presumably due to the
pressureless nature of the mimetic field and can possibly
be circumvented if one modifies the theory with higher
derivative terms, as we will discuss later.

The analysis of [71] imposed the conformal gauge con-
dition (3) prior to proceeding to the canonical formulation.
A proper analysis should instead take place in full generality
and has been conducted in [75]. This analysis finds that the
Hamiltonian constraint depends linearly on the momentum,
which in most cases signals that the Hamiltonian density
of the theory is unbounded from below, a classical sign of
instability. As anticipated, this occurs frequently for higher
derivative theories, which are prone to the Ostrogradski
instability. The work in [75] concluded, as [71], that mimetic
gravity is stable as long as the energy density in the dust
degree of freedom in the theory remains positive. However,
this is not always consistent with the dynamics of the theory,
given that for some initial configurations, the energy density
could start its evolution with a positive value but then end
up with a negative value, which would cause instability. In
fact, [75] finds that the requirement that the theory be stable
correspond to the requirement that initial configurations do
not cross the surface for which the momentum conjugate to
the mimetic field, 𝑝𝜙, satisfies 𝑝𝜙 = 0.

A possible solution to these instability issues was pre-
sented in [71] and studied in [75]. The idea is to modify the
parametrization (5) by making use, instead of the gradient of
a scalar field, of a dynamical vector (Proca) field:

𝑔𝜇] = −𝑔𝜇]𝑔𝛼𝛽𝑢𝛼𝑢𝛽. (22)

The Proca field is made dynamical by adding a Maxwell
kinetic term 𝐹2 to the action, where 𝐹 is the field-strength
tensor of the vector field. It is beyond the scope of our
review to provide details of the analysis, conducted in [75]
which finds that theHamiltonian in the Procamimeticmodel
shows no sign of instability. Furthermore, [75] proposes an
interesting extension of mimetic gravity to a mimetic tensor
vector scalar model, by generalizing (2) to

𝑔𝜇] = −𝑓 (𝜙) 𝑔𝜇]𝑔𝛼𝛽𝑢𝛼𝑢𝛽, (23)

where now both the scalar and vector degrees of freedom
contribute tomimetic matter. It is furthermore demonstrated
that the theory is free of ghosts [75].

Another recent work confirmed in all generality that the
original mimetic gravity theory suffers from ghost insta-
bility [140], in the following way. It is immediate to show
that mimetic gravity is invariant under the local symmetry
defined by

𝛿𝜙 = 0,
𝛿𝑔𝜇] = 𝜖(𝜕A𝜕𝑋𝑔𝜇] + 𝜕B𝜕𝑋 𝜕𝜇𝜙𝜕]𝜙) , (24)

where as usual A and B correspond to the conformal and
disformal factors. Being A = 𝑋 and B = 0 for mimetic
gravity, (24) corresponds as expected to invariance of the
physical metric under conformal transformations of the aux-
iliary metric. In the Hamiltonian description, this symmetry
is associated with a first class constraint. In fact, one can
show that the primary constraint, which corresponds to the
generator of infinitesimal conformal transformations, is first
class, with its Poisson commuting with the Hamiltonian and
momentum constraints. This leaves no place for a secondary
constraint which could eliminate the Ostrogradski ghost.
Thus, this result confirms indeed that the original mimetic
gravity proposal suffers from a ghost instability.

3. Solutions and Extensions of Mimetic Gravity

Having discussed the underlying physical foundation of
mimetic gravity, and its stability, we can now proceed to study
solutions and extensions of this theory.

3.1. Potential for Mimetic Gravity. Recall that, in a cosmolog-
ical setting, the mimetic field plays the role of “clock.”There-
fore, one can imagine making the mimetic field dynamical
by adding a potential for such field to the action. A field-
dependent potential corresponds to a time-dependent poten-
tial which, by virtue of the Friedmann equation, corresponds
to a time-varying Hubble parameter (and correspondingly
scale factor). Therefore, by adding an appropriate potential
for the mimetic field, one can in principle reconstruct any
desired expansion history of the universe. This is the idea
behind the minimal extension of mimetic gravity first pro-
posed in [73]. The action of mimetic gravity (in the Lagrange
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multiplier formulation) is thus extended to include a potential
for the mimetic field:

𝐼 = 12 ∫M 𝑑4𝑥√−𝑔
⋅ [𝑅 + 𝜆 (𝑔𝜇]𝜕𝜇𝜙𝜕]𝜙 + 1) − 𝑉 (𝜙) + 2L𝑚] .

(25)

The equations of motion of the theory are then given by

𝐺𝜇] − 2𝜆𝜕𝜇𝜙𝜕]𝜙 − 𝑔𝜇]𝑉 (𝜙) = 𝑇𝜇], (26)

which, by taking the trace, can be used to determine the
Lagrange multiplier:

𝜆 = 12 (𝐺 − 𝑇 − 4𝑉) . (27)

When plugged into (26), (27) yields

𝐺𝜇] = (𝐺 − 𝑇 − 4𝑉) 𝜕𝜇𝜙𝜕]𝜙 + 𝑔𝜇]𝑉 (𝜙) + 𝑇𝜇]. (28)

Of course, variationwith respect to the Lagrangemultiplier as
usual yields the constraint (3).Thus,when a potential is added
to the action, the mimetic field contributes a pressure and
energy density of𝑝 = −𝑉 and𝜌 = 𝐺−𝑇−3𝑉, respectively [73].
One further equation ofmotion can be derived by varying the
action with respect to the mimetic field, which gives

∇] [(𝐺 − 𝑇 − 4𝑉) 𝜕]𝜙] = −𝜕𝑉𝜕𝜙 , (29)

when taking into account the expression for the Lagrange
multiplier (27).

To study cosmological solutions, it is useful to consider a
flat FLRW background (10), since therein the mimetic field
can be identified with time. In this case, it is not hard to show
that (29) reduces to [73]

1𝑎3 𝑑𝑑𝑡 [𝑎3 (𝜌 − 𝑉)] = −𝑑𝑉𝑑𝑡 , (30)

which can be integrated to give

𝜌 = 3𝑎3 ∫𝑑𝑎 𝑎2𝑉, (31)

whereas the pressure remains 𝑝 = −𝑉. The Friedmann
equation can instead be manipulated to the form:

2�̇� + 3𝐻2 = 𝑉 (𝑡) , (32)

where as usual the Hubble parameter is defined as 𝐻 ≡ ̇𝑎/𝑎.
Further progress can be made by performing the substitution𝑦 ≡ 𝑎3/2, which yields the following equation [73]:

̈𝑦 − 34𝑉 (𝑡) 𝑦 = 0. (33)

It should be noticed that the equations of motion simplify
greatly because of the identification of the mimetic field with
time on an FLRW background. In this way, the pressure
becomes a known function of time and 𝑦 satisfies a linear dif-
ferential equation.We now proceed to study a few interesting
potentials and the corresponding solutions.

3.1.1. 𝑉 ∝ 1/𝜙2. Let us consider the following potential [73]:
𝑉 (𝜙) = 𝛼𝜙2 = 𝛼𝑡2 . (34)

Solving the corresponding (33) and substituting for the scale
factor, 𝑎 ≡ 𝑦2/3, yield the following solution for 𝛼 ≥ −1/3:

𝑎 (𝑡) = 𝑡(1/3)(1+√1+3𝛼) (1 + 𝛽𝑡−√1+3𝛼)2/3 , (35)

where 𝛽 is an integration constant. For 𝛼 < −1/3 the
solution describes an oscillating flat universe with amplitude
of oscillations which grows with time; however, the solution
presents singularities and for this reason we will not write
it down explicitly [73]. We can furthermore determine the
equation of state parameter (EoS) 𝑤 ≡ 𝑝/𝜌 if we recall that
the energy density is given by (31) whereas the pressure reads𝑝 = −𝑉. Explicit calculation gives the following:

𝑤 = −3𝛼(1 + √1 + 3𝛼1 − 𝛽𝑡−√1+3𝛼1 + 𝛽𝑡−√1+3𝛼)
−2 . (36)

It is interesting to note that, for 𝛼 ≫ 1, the EoS approaches𝑤 = −1, that is, a cosmological constant, at late times.
We can consider the case where mimetic matter is a

subdominant energy component in the universe, which is
instead dominated by another form of matter with EoS 𝑤.
The scale factor in this situation evolves as

𝑎 ∝ 𝑡2/3(1+𝑤), (37)

and hence (31) can be used to deduce the evolution of the
energy density of mimetic matter, which decays as

𝜌 = − �̃�𝑤𝑡2 . (38)

Given that the pressure of mimetic matter reads 𝑝 = −𝑉,
we immediately see that the EoS for mimetic matter is 𝑤 =𝑤, demonstrating that mimetic matter, when subdominant,
can imitate the EoS of the dominant energy component [73].
A comment is in order here. Mimetic matter can only be
subdominant if 𝛼/𝑤 ≪ 1. If this condition is not satisfied,
mimetic matter will only start imitating the dominant matter
component at late times, while acting as a cosmological
constant at earlier times.

3.1.2. Power-Law Potential. We can consider an arbitrary
power-law potential:

𝑉 (𝜙) = 𝛼𝜙𝑛 = 𝛼𝑡𝑛, (39)

for which the solution of (33) can be written in terms of the
Bessel functions [73]:

𝑦 = 𝑡1/2𝑍1/(𝑛+2) (√−3𝛼𝑛 + 2 𝑡(𝑛+2)/2) . (40)

For 𝑛 < −2 (with 𝑛 = −2 corresponding to the case we
have studied previously) the limiting behaviour of the scale
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factor is that of a dust-dominated universe, with EoS 𝑤 = 0.
For 𝑛 > −2 and 𝛼 < 0 (which corresponds to a positive
pressure), the corresponding solution is a singular oscillating
universe. For 𝑛 > −2 and 𝛼 > 0 instead, the pressure
is negative and hence we expect accelerating solutions [73].
In fact, 𝑛 = 0 corresponds to a cosmological constant as
expected (the potential is simply a constant), whereas 𝑛 = 2
gives an inflationary expansion solution with scale factor:

𝑎 ∝ 𝑡−1/3𝑒√𝛼/12𝑡2 , (41)

which resembles that of chaotic inflation sourced by a
quadratic potential [73].

3.1.3. Inflation in Mimetic Gravity. One can always recon-
struct the appropriate potential for the mimetic field which
can provide an inflationary solution. The method is very
simple: choose a desired expansion history of the universe
[encoded in the Hubble parameter 𝐻 or equivalently in
the scale factor 𝑎(𝑡)], find the corresponding 𝑦-parameter
through 𝑎 = 𝑦2/3, and then invert (33) to find the correspond-
ing potential which can provide the desired expansion:

𝑉 (𝜙) = 𝑉 (𝑡) = 4 ̈𝑦3𝑦 . (42)

As an example, we can consider the following potential [73]:

𝑉 (𝜙) = 𝛼𝜙2𝑒𝜙 + 1 , (43)

whose corresponding solution for the scale factor is exponen-
tial (𝑎 ∝ 𝑒−𝑡2) for large negative times and corresponding
to EoS 𝑤 = 0 (i.e., dust, 𝑎 ∝ 𝑡2/3) at late times. Thus, we
see that with this potential mimetic gravity can provide us
with an inflationary solution with graceful exit to the matter
dominated era [73].

Another interesting possibility is given by an exponential
potential [83]:

𝑉 (𝜙) = 𝛼𝑒−𝜅𝜙 = 𝛼𝑒−𝜅𝑡. (44)

In this case, the scale factor can be expressed in terms of
Bessel functions of the first and second kinds [83]:
𝑎 (𝑡)
= [𝛽𝐽0 (√−3𝛼𝜅 𝑒−𝑘𝑡/2) + 𝛾𝑌0 (√−3𝛼𝜅 𝑒−𝑘𝑡/2)]2/3 , (45)

where 𝛽 and 𝛾 are integration constants and 𝐽0 and 𝑌0 are
the modified Bessel functions of order zero, of the first and
second kinds, respectively. At late times, the behaviour of the
scale factor is that of a matter dominated universe, that is,
with EoS 𝑤 = 0 (𝑎 ∝ 𝑡2/3). At early times the behaviour
of the scale factor depends on the sign of 𝛼, in particular
providing us with an inflationary solution for 𝛼 > 0, whereas
the solution is a bouncing nonsingular universe for 𝛼 <0. A similar behaviour can be obtained if one chooses the
potential:

𝑉 (𝜙) = 𝛼𝜙2𝑛𝑒𝜅𝜙 + 1 = 𝛼𝑡2𝑛𝑒𝜅𝑡 + 1 , (46)

that is, a solution with inflation at early times and matter
domination at late times. More complicated potentials which
can reproduce qualitatively similar behaviours were studied
in [103].

3.1.4. Bouncing Universes in Mimetic Gravity. As we have
already seen in previous cases, one can easily construct
bouncing solutions in mimetic gravity. Let us work through
one further example here. Consider a potential of the form:

𝑉 (𝜙) = 43 1
(1 + 𝜙2)2 =

43 1
(1 + 𝑡2)2 . (47)

As usual, the scale factor can be determined by solving (33),
which yields [73]

𝑎 (𝑡) = [√𝑡2 + 1 (1 + 𝛽 arctan 𝑡)]2/3 . (48)

If we set the integration constant 𝛽 to 0, the corresponding
energy density and pressure (one again, refer to (31) and recall
that 𝑝 = −𝑉) are given by

𝜌 = 43 𝑡2
(1 + 𝑡2)2 ,

𝑝 = −43 1
(1 + 𝑡2)2 .

(49)

At very early times (large negative 𝑡) the EoS approaches𝑤 → 0; the universe is dominated by dust and contracts. At
a certain time corresponding to |𝑡| ∼ 1, the energy density
drops suddenly to zero, after which the universe begins
expanding. During the first instants of the expansion (within
one Planckian time), the energy density of the universe is
Planckian but subsequently drops as the expansion proceeds
as a conventional expansion in a dust-dominated universe.
The interesting feature of this potential is that the EoS crosses
the phantom divide without singularity. This remains true
even in the general case where the integration constant 𝛽 is
nonzero, provided |𝛽| < 2/𝜋 [73].

In the case we have just examined, the bounce occurs at
the Planck scale, and hence the classical analysis we provided
might not be valid as quantum gravity effects would be
playing an important role. However, a minimal modification
allows lowering the scale of the bounce and correspondingly
increases the duration of the bounce (which now lasts more
than a Planckian time). The corresponding potential which
can provide this behaviour is given by [73]

𝑉 (𝜙) = 43 𝛼
(𝜙20 + 𝜙2)2 =

43 𝛼
(𝑡20 + 𝑡2)2 . (50)

Although we will not show the solution explicitly, in this case
the scale of the bounce is reduced to 𝛼/𝑡20 and the duration of
the bounce is now 𝑡0 [73].
3.2. Mimetic 𝐹(𝑅) Gravity. The next step which was per-
formed by Nojiri and Odintsov is to generalize mimetic
gravity to mimetic 𝐹(𝑅) gravity [81]. In this theory we expect
to have two additional degrees of freedom compared to GR:
the constrained (nonpropagating) scalar degree of freedomof
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mimetic gravity and the additional scalar degree of freedom
arising from the 𝐹(𝑅) term. The action of the theory is given
by [81]

𝐼 = ∫𝑑4𝑥√−𝑔 (𝑔𝜇], 𝜙) [𝐹 (𝑅 (𝑔𝜇], 𝜙)) +L𝑚] , (51)

where as usual the relation between the physical and auxiliary
metric and themimetic field is given by (2), and the constraint
equation (3) has to be satisfied. Because of this, the action
of mimetic 𝐹(𝑅) gravity can be equally written employing a
Lagrange multiplier field analogously to (11) [81]:

𝐼 = ∫𝑑4𝑥√−𝑔 [𝐹 (𝑅 (𝑔𝜇])) − 𝑉 (𝜙)
+ 𝜆 (𝑔𝜇]𝜕𝜇𝜙𝜕]𝜙 + 1) +L𝑚] ,

(52)

where the Lagrange multiplier enforces the constraint on the
gradient of the mimetic field and in addition we have added
a potential for the mimetic field.

The equations of motion of the theory are slightly more
complicated than that of conventional mimetic gravity. Vary-
ing with respect to the metric gives the gravitational field
equations [81]:

0 = 12𝑔𝜇]𝐹 (𝑅) − 𝑅𝜇]𝐹󸀠 (𝑅) + ∇𝜇∇]𝐹󸀠 (𝑅)
− 𝑔𝜇]◻𝐹󸀠 (𝑅) + 12𝑔𝜇] [−𝑉 (𝜙) + 𝜆 (𝑔𝛼𝛽𝜕𝛼𝜙𝜕𝛽𝜙)]
− 𝜆𝜕𝜇𝜙𝜕]𝜙 + 12𝑇𝜇].

(53)

Variation with respect to the mimetic field instead yields the
following equation [81]:

2∇𝜇 (𝜆𝜕𝜇𝜙) + 𝑑𝑉𝑑𝜙 = 0. (54)

As usual, by construction, variation with respect to the
Lagrange multiplier gives the mimetic constraint:

𝑔𝜇]𝜕𝜇𝜙𝜕]𝜙 = −1. (55)

As we have mentioned previously, in mimetic 𝐹(𝑅)
gravity one has two additional degrees of freedom.Therefore,
by appropriately tuning either or both the potential for
the mimetic field, or the form of the 𝐹(𝑅) function, one
can reconstruct basically any desired expansion history of
the universe. On the other hand, the interpretation of the
cosmological role played bymimetic darkmatter remains the
same as in mimetic gravity [81].

Let us proceed to study some of the properties of mimetic𝐹(𝑅) gravity in a cosmological setting. As usual, we consider
a flat FLRW universe, and we model the matter contribution
as that of a perfect fluid with energy density 𝜌 and pressure 𝑝.
Assuming that the mimetic field depends only on time, (53),
(54), and (55) can be expressed as follows [81]:

0 = −𝐹 (𝑅) + 6 (�̇� + 𝐻2) 𝐹󸀠 (𝑅) − 6𝐻𝑑𝐹󸀠 (𝑅)𝑑𝑡
− 𝜆 ( ̇𝜙2 + 1) + 𝑉 (𝜙) + 𝜌,

(56)

0 = 𝐹 (𝑅) − 2 (�̇� + 3𝐻) + 2𝑑2𝐹󸀠 (𝑅)𝑑𝑡2 + 4𝐻𝑑𝐹󸀠 (𝑅)𝑑𝑡
− 𝜆 ( ̇𝜙2 − 1) − 𝑉 (𝜙) + 𝑝,

(57)

0 = 2 𝑑𝑑𝑡 (𝜆 ̇𝜙) + 6𝐻𝜆 ̇𝜙 − 𝑑𝑉𝑑𝜙 , (58)

0 = ̇𝜙2 − 1. (59)

The last equation shows that up to an integration constant,
which we can set to zero, the mimetic field can be identified
with time just as in ordinary mimetic gravity. Thus, (58) can
be expressed as follows:

0 = 𝐹 (𝑅) − 2 (�̇� + 3𝐻) + 2𝑑2𝐹󸀠 (𝑅)𝑑𝑡2 + 4𝐻𝑑𝐹󸀠 (𝑅)𝑑𝑡
− 𝑉 (𝑡) + 𝑝,

(60)

which, if we assume that the contribution of ordinary matter
is negligible (𝜌 = 𝑝 = 0), reduces to

𝑉 (𝑡) = 𝐹 (𝑅) − 2 (�̇� + 3𝐻) + 2𝑑2𝐹󸀠 (𝑅)𝑑𝑡2
+ 4𝐻𝑑𝐹󸀠 (𝑅)𝑑𝑡 .

(61)

On the other hand, (57) can be solved for 𝜆 as follows:
𝜆 (𝑡) = −12𝐹 (𝑅) + 3 (�̇� + 𝐻2) 𝐹󸀠 (𝑅) − 3𝐻𝑑𝐹󸀠 (𝑅)𝑑𝑡 , (62)

which shows that (59) is automatically satisfied.
The above equations put on a quantitative footing the

statement we previously made: namely, that by tuning the
behaviour of either or both the two additional scalar degrees
of freedom, we can reconstruct any possible expansion
history of the universe [81]. For instance, one can imagine
fixing the form of the scalar potential and then reconstruct
the form of 𝐹(𝑅) which gives the wanted evolution [encoded
in 𝐻(𝑡) or, equivalently, 𝑎(𝑡)]. Alternatively, one can start
from a given form of 𝐹(𝑅)whichmight not admit the wanted
evolution (e.g., matter dominated-like expansion followed
by accelerated expansion) and reconstruct the form of the
scalar potential which can allow for such expansion. It should
also be remarked that any solution in conventional 𝐹(𝑅)
gravity is also a solution in mimetic 𝐹(𝑅) gravity, but the
converse is not true. In [81] specific solutions which allow
unification of early-time inflation and late-time acceleration
with intermediatematter domination era, as well as bouncing
Universes, are studied and it is shown that they can be
implemented in mimetic 𝐹(𝑅) gravity. Of course, the exact
forms of the mimetic potential or the 𝐹(𝑅) function in these
cases are quite complicated; nonetheless, the study serves as
a proof of principle that, in such theories, one can realize any
given expansion history of the universe without the need for
dark components, which remains the main goal of modified
theories of gravity.

Three further recent studies byOdintsov andOikonomou
[112, 120, 130] have demonstrated how one can, in mimetic
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𝐹(𝑅) gravity, realize inflationary cosmologies which are
compatible with Planck and BICEP2/Keck Array constraints
on the scalar spectral index and on the tensor-to-scalar ratio,𝑛𝑠 and 𝑟, respectively. Both the reconstruction (determination
of the potential once the form of 𝐹(𝑅) and the evolutionary
history of the universe are given) and the inverse reconstruc-
tion (determination of the form of 𝐹(𝑅) once the potential
and the evolutionary history of the universe are given) are
studied in detail and it is demonstrated that several viable
options for realizing inflation compatibly with observational
constraints are possible. However, the studies also point out
a possible weakness of mimetic 𝐹(𝑅) gravity in this respect:
namely, the forms of both the mimetic potential and the𝐹(𝑅) function can become extremely complicated.The forms
of both the mimetic potential and the Lagrange multiplier
increase in complexity as the complexity of the 𝐹(𝑅) form
increases. Therefore, these and other studies on mimetic𝐹(𝑅) gravity and extensions thereof should not be viewed as
the ultimate cosmological theory of everything, but rather
as a proof of principle that within these theories one can
reproduce basically any cosmological scenario and thus solve
the “dark universe” problems, although this might come at
the cost of sacrificing simplicity.

In addition, [112, 120, 130] also remarked that, although
in principle the forms of the mimetic potential and the𝐹(𝑅) function can be arbitrary, it must be kept in mind
that, in order to realize viable inflation, a mechanism for
graceful exit to the conventional radiation dominated era
must be achieved. This entails ensuring that the theory
contains unstable de Sitter vacua, which eventually becomes
the cosmological attractor of the dynamical system. It is
precisely the functional form of 𝐹(𝑅) which has to ensure
that graceful exit takes place. Therefore, in mimetic gravity,
although in principle the form of the potential is arbitrary,
the same cannot be said about the functional form of𝐹(𝑅), which has to be such as to ensure graceful exit from
inflation. Therefore, in the interest of simplicity, a practical
approach to constructing a minimal model of mimetic 𝐹(𝑅)
gravity with the desired inflationary properties would be
to choose the simplest possible functional form of 𝐹(𝑅)
which ensures graceful exit from inflation, then performing
the reconstruction technique to determine the form of the
mimetic potential which allows the desired expansion history
following inflation to be realized. Another possible solution,
which we will discuss shortly, is to consider 𝐹(𝑅, 𝜙) inflation
[95, 116], where a dynamical scalar field𝜙 is coupled to gravity.
3.2.1. Late-Time Evolution in Mimetic Gravity. So far we have
discussed mimetic gravity and variants thereof at early times,
that is, at the epoch when primordial curvature perturbations
were generated. However, it is also interesting to consider
late-time evolution in mimetic gravity. The equations of
motion are incredibly complex and in principle do not allow
for analytical solutions. However, this complexity can be
bypassed by means of the method of dynamical analysis (see,
e.g., [391–394]), which gives information about the global
behaviour of solutions. In particular, one proceeds by trans-
forming the equations of motion into their autonomous form

and extract the critical points. Subsequently perturbations
are linearized around these critical points and expressed in
terms of the perturbation matrix, the eigenvalues of which
determine the type and stability of the critical points.

A detailed dynamical analysis of mimetic 𝐹(𝑅) gravity
was presented in [86].This type of analysis allows us to bypass
the complexity of the equations of motion by extracting crit-
ical points and studying the corresponding observables, such
as the energy densities of the various energy components,
the corresponding EoS, and the deceleration parameter. In
particular, the analysis finds that the only stable critical
points, that is, those that can play the role of attractors at
late times, are those that exist in 𝐹(𝑅) gravity as well. In
other words, stable solutions in mimetic 𝐹(𝑅) gravity can
only affect the expansion history of the universe at early
and intermediate times, whereas at late times the expansion
history has to coincide with that driven by conventional𝐹(𝑅) gravity. An immediate implication of this finding is
that, although mimetic 𝐹(𝑅) gravity could drive inflation
differently from 𝐹(𝑅) gravity, the late-time acceleration of
the universe in these theories has to coincide with the usual𝐹(𝑅) gravity one [86]. However, these conclusions have been
reached only by studying the theory at the level of the
background. It is expected that different conclusions would
be reached if the same study would be performed at the
level of perturbations. This is true because the new terms
present in the equations of motion of mimetic 𝐹(𝑅) gravity
compared to conventional 𝐹(𝑅) gravity can contribute to
the perturbation equations, although they do not contribute
at the background level [86]. Finally, the energy conditions
required to avoid the Dolgov-Kawasaki instability inmimetic
gravity were studied in [108], which found that these are the
same as in conventional 𝐹(𝑅) gravity.

As we mentioned above, the conclusions reached about
the late-time evolution in mimetic 𝐹(𝑅) gravity hold only at
the background level. However, in conventional 𝐹(𝑅) gravity,
there exists a serious problem during the late-time evolution
at the perturbation level, namely, that of dark energy oscilla-
tions [395] (see also, e.g., [396–399]). The degree of freedom
associated with the modification of GR (that is, 𝑑𝐹(𝑅)/𝑑𝑅)
leads to high frequency oscillations of the dark energy around
the line of the phantom divide during matter era. As a
consequence, some derivatives of the Hubble parameter may
diverge and become singular, and the solution is unphysical.
Usually in conventional𝐹(𝑅) gravity the problem is solved by
adding power-law modifications by hand.

In [153], it was instead argued that inmimetic𝐹(𝑅) gravity
it is possible to overcome the problem by a suitable choice
of the potential. By appropriately choosing the potential and
the Lagrange multiplier, it is possible to damp the oscillations
within a mimetic 𝐹(𝑅)model whose corresponding conven-
tional 𝐹(𝑅) model suffered from the oscillations problems.
The oscillations die out for redshifts 𝑧 ≤ 3, so there is no issue
with dark energy oscillations at our current epoch.Moreover,
the values of the dark energy equation of state and the
total equation of state are very close to the observed values.
The model can in principle be discerned from 𝐹(𝑅) gravity
in that the predicted growth factor is lower in magnitude,
a very testable prediction in view of future experiments,
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further supporting the viability of mimetic 𝐹(𝑅) gravity as a
cosmological framework.

3.2.2. Mimetic 𝐹(𝑅, 𝜙) Gravity. The question of constructing
a theoretically motivated but at the same time simple model
for mimetic 𝐹(𝑅) gravity which provides an early-time
inflation epoch, but at the same time graceful exit from the
latter, was addressed in [95].Here, amodel ofmimetic𝐹(𝑅, 𝜙)
gravity was considered, where 𝜙 is a scalar field coupled to
gravity. We will not go into the details of the work, for which
we refer the reader to the original paper [95].The basic idea is
to use the 𝐹(𝑅) sector to reproduce a variety of cosmological
scenarios: among the ones considered in the paper were
accelerated cosmologies at high and low curvatures (thus
unifying inflation and late-time acceleration), with Einstein
gravity at intermediate curvatures. In particular, the acceler-
ated cosmologies are realized by making use of a “switching-
on” cosmological constant. The dynamical field 𝜙 evolves in
such a way to allow for graceful exit from the inflationary
period, thus making the vacua of the first de Sitter period
(corresponding to inflation) unstable. Entry into the late-time
accelerated epoch, represented by a stable de Sitter attractor,
is also made possible by the dynamical field, which thus
links all epochs of the expansion history of the universe
in a unified way. In the minimal case studied in [95], the
mimetic component ensures the presence of cosmological
nonbaryonic dark matter although, as we have extensively
discussed, it is possible by adding a suitable potential for the
mimetic field to obtain similar solutions, but with a different
form of 𝐹(𝑅).
3.2.3. Nonlocal Mimetic 𝐹(𝑅) Gravity. A further extension of
mimetic 𝐹(𝑅) gravity was presented in [133], which embeds
the theory into the framework of nonlocal theories of gravity.
Recall that these theories were first presented in [373],
inspired by quantum loop corrections.These theories feature
nonlocal operators (i.e., inverse of differential operators) of
the curvature invariants. The prototype of nonlocal mimetic𝐹(𝑅) gravity is given by the action [133]:

𝐼 = ∫𝑑4𝑥√−𝑔 [𝑅 (1 + 𝑓 (◻−1𝑅))
+ 𝜆 (𝑔𝜇]𝜕𝜇𝜙𝜕]𝜙 + 1) − 𝑉 (𝜙)] ,

(63)

where as usual 𝜙 is the mimetic field and the Lagrange
multiplier term enforces the constraint on its gradient. It is
actually more useful to introduce an additional scalar field 𝜓,
which allows us to translate the action given by (63) to a local
scalar-tensor form, as follows [133]:

𝐼 = ∫𝑑4𝑥√−𝑔 [𝑅 (1 + 𝑓 (𝜓)) + 𝜉 (◻𝜓 − 𝑅)
+ 𝜆 (𝑔𝜇]𝜕𝜇𝜙𝜕]𝜙 + 1) − 𝑉 (𝜙)] ,

(64)

where 𝜉 is an additional Lagrange multiplier which enforces
the constraint on the scalar field 𝜓:

◻𝜓 = 𝑅. (65)

Aside from the two constraint equations obtained by varying
the action with respect to the Lagrange multipliers, variation
of the action with respect to the yields the gravitational field
equations [133]:

𝑅𝜇] (1 + 𝑓 (𝜓) − 𝜉) − 12𝑔𝜇]𝑅 (1 + 𝑓 (𝜓) − 𝜉)
− 𝜕𝜌𝜉𝜕𝜌𝜓

= 12 (𝜕𝜇𝜉𝜕]𝜓 + 𝜕𝜇𝜓𝜕]𝜉)
− (𝑔𝜇]◻ − ∇𝜇∇]) (𝑓 (𝜓) − 𝜉) − 𝜆𝜕𝜇𝜙𝜕]𝜙
− 𝑔𝜇]𝑉 (𝜙) .

(66)

Instead, variation with respect to the two scalar fields leads to
the following equations of motion [133]:

◻𝜉 + 𝑓󸀠 (𝜓) 𝑅 = 0,
− 1√−𝑔𝜕] (√−𝑔𝜕]𝜙) = 12 𝑑𝑉𝑑𝜙 .

(67)

In [133], this model was studied in detail making use of the
reconstruction technique. In particular, two forms for the𝑓(𝜓) function have been studied: exponential and power-
law. It was shown that appropriate choices for the mimetic
potential, as expected, can give the desired expansion history
of the universe, which in the cases studied included viable
inflation unified with late-time acceleration with intermedi-
ate epoch compatible with Einstein’s gravity and cosmological
darkmatter provided by themimetic field, as well as solutions
with cosmological bounces.

3.3. Unimodular Mimetic Gravity. As we have seen, mimetic
gravity provides a geometric explanation for dark matter in
the universe, with dark matter emerging as an integration
constant as a result of gauging local Weyl invariance, without
the need for additional fluids. An older theory, known as
unimodular gravity [400] (see also [98, 401–419]), had instead
been proposedmuch earlier to solve, in a geometrical fashion
as well, one more of the conundrums of modern cosmology:
the dark energy problem. In this framework, dark energy
emerges in the form of a cosmological constant from the
trace-free part of Einstein’s field equations, with the trace-free
part which results in turn by enforcing the condition that the
square root of (minus) the determinant of the metric is equal
to 1, or in general a constant. It would therefore be interesting
to combine the two different approaches of mimetic gravity
and unimodular gravity into a single framework which could
geometrically explain both dark matter and dark energy by a
vacuum theory, without need for additional fluids.This is the
proposal of Nojiri et al. in [136].

In order to combine mimetic gravity and unimodular
gravity it is necessary to enforce two constraints. The first
is the constraint on the gradient of the mimetic field (3),
whereas the second is the unimodular constraint:

√−𝑔 = 1. (68)
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In order to enforce these two constraints, it is conceptu-
ally simple to make use of two Lagrange multipliers. This
approach has two advantages. First, it keeps the two concepts
of mimetic and unimodular gravity separate and facilitates
the extraction of physical information. Second, it is as usual
more convenient to have the two constraints emerge from
the equations of motion. The action for unimodular mimetic
gravity thus reads [136]

𝐼 = ∫𝑑4𝑥
⋅ [√−𝑔 (𝑅 − 𝑉 (𝜙) − 𝜂 (𝑔𝜇]𝜕𝜇𝜙𝜕]𝜙 + 1) − 𝜆) + 𝜆] ,

(69)

where variation with respect to the Lagrange multiplier 𝜂
enforces the mimetic constraint (3), whereas variation with
respect to the Lagrange multiplier 𝜆 enforces the unimodular
constraint (68).

The equations of motion for the gravitational field are
obtained by varying the action with respect to the metric and
are given by [136]:

0 = 12𝑔𝜇] (𝑅 − 𝑉 (𝜙) − 𝜂 (𝑔𝛼𝛽𝜕𝛼𝜙𝜕𝛽𝜙 + 1) − 𝜆)
− 𝑅𝜇] + 𝜂𝜕𝜇𝜙𝜕]𝜙 + 12𝑇𝜇],

(70)

whereas variation with respect to the mimetic field yields the
usual equation of motion:

0 = 2∇𝜇 (𝜆𝜕𝜇𝜙) − 𝑑𝑉𝑑𝜙 . (71)

Although we do not show the steps explicitly, for which we
refer the reader to the original paper [136], in the usual FLRW
setting it is possible to manipulate the Einstein equations in
order to get the following reconstruction equation for the
mimetic potential 𝑉(𝜙) = 𝑉(𝑡) (as usual, the mimetic field
can be identified with time):

𝑉 (𝜙) = 𝑉 (𝑡) = 𝑎 (𝑡)23 ∫𝜙
0
𝑑𝑡 𝑎 (𝑡)−2 [−6𝐻 (𝑡) 𝑝 (𝑡)

− 2𝑑𝑝 (𝑡)𝑑𝑡
+ 2(−18𝐻 (𝑡)3 − 6𝐻 (𝑡) 𝑑𝐻 (𝑡)𝑑𝑡 + 4𝑑2𝐻(𝑡)𝑑𝑡2 )] .

(72)

The content of the above equation is clear: as in all exten-
sions so far discussed of mimetic gravity, one can always
reconstruct the potential for the mimetic field which can
provide the desired expansion encoded in 𝐻(𝑡) or 𝑎(𝑡). The
reconstruction technique is very powerful although, as we
have seen, the corresponding potentials are complicated and
somewhat hard to justify from first principles, although the
reconstruction technique serves in this case as a proof of
principle tool.

Having made this consideration, let us consider a few
examples where the reconstruction technique is applied. Let
us consider the following simple potential [136]:

𝑉 (𝜙) = 12𝑒2𝐻0𝜙𝐻30𝜙. (73)

It can be easily shown that it leads to the following solution
for the scale factor 𝑎(𝑡) and the Hubble parameter𝐻(𝑡):

𝑎 (𝑡) = 𝑒𝐻0𝑡,
𝐻 (𝑡) = 𝐻0, (74)

that is, a de Sitter cosmology. The functional forms of the
Lagrangemultiplier are also quite simple and are given by the
following:

𝜆 (𝑡) = 6𝐻20 (1 + 2𝑒2𝐻0𝑡𝐻0𝑡) ,
𝜂 (𝑡) = 3𝐻20 . (75)

Another choice for the potential which leads to a physically
interesting solution is the following [136]:

𝑉 (𝜙) = −8𝜙−2+4/3(1+𝑤) (1 + 5𝑤 + 2𝑤2)9 (1 + 𝑤)3 , (76)

for which the scale factor and the Hubble parameter read

𝑎 (𝑡) = 𝑡2/3(1+𝑤),
𝐻 (𝑡) = 23𝑡 (1 + 𝑤) .

(77)

The above solution is that corresponding to an universe dom-
inated by a fluidwith EoS𝑤.The two Lagrangemultipliers are
given by

𝜆 (𝑡) = 8 (−3𝑤 (1 + 𝑤) + 𝑡4/3(1+𝑤) (1 + 5𝑤 + 2𝑤2))
9𝑡2 (1 + 𝑤)3 ,

𝜂 (𝑡) = 4 (2 + 𝑤)3𝑡2 (1 + 𝑤)2 .
(78)

Thus, we see that with two relatively simple choices of
potential it is possible to reconstruct two important expan-
sion histories of the universe: the late-time de Sitter phase
and the expansion dominated by a perfect fluid with arbi-
trary EoS. Although we will not discuss this case explicitly
here, for which instead we redirect the reader to [136], it
is possible by a choice of a more complicated potential,
to realize a viable inflationary model within unimodular
mimetic gravity, which is compatible with bounds from
Planck and BICEP2/Keck Array.Moreover, it has been shown
that graceful exit from these types of inflationary periods
can be achieved by ensuring that the corresponding de Sitter
vacua which drives the period of accelerated expansion is
unstable.

Two further comments are in order here. First, it is pos-
sible to provide an effective fluid description of unimodular
mimetic gravity [136]. Namely, manipulation of the Einstein
equations shows that the contribution of the unimodular and
mimetic parts of the action can be interpreted as that of a
perfect fluid carrying energy density 𝜌 and pressure 𝑝 as
follows: 𝜌 = 𝐺 − 𝑇 − 4�̃�,

𝑝 = −�̃�, (79)

where �̃� is defined as
�̃� = −𝜆 (𝑡) − 𝑉 (𝑡) . (80)
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Furthermore, the effective energy density and pressure
defined as per above satisfy the continuity equation.

The second comment is related to the fact that the
unimodular constraint is enforced in a noncovariant way (cf.
the action given by (69), where one of the terms in 𝜆 is not
multiplied by √−𝑔). It is nonetheless possible to present a
covariant formulation of unimodular mimetic gravity via the
following action:

𝐼 = ∫𝑑4𝑥 [√−𝑔 (𝑅 − 𝜂 (𝑔𝜇]𝜕𝜇𝜙𝜕]𝜙 + 1) − 𝜆)
+ 𝜆𝜖𝜇]𝜌𝜎𝜕𝜇𝑎]𝜌𝜎] ,

(81)

where 𝑎]𝜌𝜎 is a three-form field, variation of which gives the
constraint 𝜕𝜇𝜆 = 0, implying that the Lagrange multiplier 𝜆
is constant. On the other hand, the covariant version of the
unimodular constraint is obtained by variation with respect
to 𝜆, from which one is left with

√−𝑔 = 𝜖𝜇]𝜌𝜎𝜕𝜇𝑎]𝜌𝜎. (82)

Further manipulation, for which we refer the reader to
[136], shows that the Friedmann equations one obtains from
the covariant version of unimodular mimetic gravity are
equivalent to those of the noncovariant version, and thus one
can reproduce precisely the same cosmological scenarios in
both theories.

3.3.1. Unimodular Mimetic 𝐹(𝑅) Gravity. A minimal exten-
sion of the unimodular mimetic gravity framework we have
discussed so far is to consider unimodular mimetic 𝐹(𝑅)
gravity, which is described by the action [138]:

𝐼 = ∫𝑑4𝑥
⋅ [√−𝑔 (𝐹 (𝑅) − 𝑉 (𝜙) − 𝜂 (𝑔𝜇]𝜕𝜇𝜙𝜕]𝜙 + 1) − 𝜆)
+ 𝜆] .

(83)

As expected, the equations of motion are slightly more
complicated than in the unimodular mimetic case, but no
conceptual difficulty is added. Specifically, variation with
respect to the two Lagrange multipliers enforces the usual
unimodular and mimetic constraints, whereas variation with
respect to the metric gives rise to the equations for the
gravitational field [138]:

𝑔𝜇]2 (𝐹 (𝑅) − 𝑉 (𝜙) + 𝜂 (𝑔𝛼𝛽𝜕𝛼𝜙𝜕𝛽𝜙 + 1) − 𝜆)
− 𝑅𝜇]𝐹󸀠 (𝑅) − 𝜂𝜕𝜇𝜙𝜕]𝜙 + ∇𝜇∇]𝐹󸀠 (𝑅)
− 𝑔𝜇]◻𝐹󸀠 (𝑅) = 0.

(84)

Finally, variation with respect to the mimetic field yields the
following equation:

0 = 2∇𝜇 (𝜆𝜕𝜇𝜙) − 𝑑𝑉𝑑𝜙 . (85)

Themore complex structure of the equations of motion com-
plicates the reconstruction procedure, that is, the equivalent
of (72), which now reads [138]

𝑉 (𝑡) = 𝑎 (𝑡)3/22 ∫𝑑𝑡 𝑎 (𝑡)−3/2 𝑓 (𝑡) , (86)

where the function 𝑓(𝑡) is given by

𝑓 (𝑡) = − [18𝐻 (𝑡) (�̇� + 𝐻2) 𝐹󸀠 (𝑅) − 6𝐻2 𝑑𝐹󸀠 (𝑅)𝑑𝑡
− 18�̇�𝐻3 + 6𝐻𝑑3𝐹󸀠 (𝑅)𝑑𝑡3 + (6�̈� + 2�̇�𝐻)𝐹󸀠 (𝑅)
+ 𝐻�̇�𝑑𝐹󸀠 (𝑅)𝑑𝑡 + 6𝐻2 𝑑𝐹󸀠 (𝑅)𝑑𝑡 − 2𝐻𝑑2𝐹󸀠 (𝑅)𝑑𝑡2
− 2 (�̈� + 6�̇�𝐻) + 2𝑑2𝐹󸀠 (𝑅)𝑑𝑡2 ] .

(87)

Despite the increased complexity of the equations of motion,
the same considerations apply as for unimodular mimetic
gravity, as well as all extensions of mimetic gravity hereto
considered. Namely, it is always possible to reconstruct any
viable cosmological expansion scenario, including unifica-
tion of inflation and late-time acceleration with intermediate
radiation and matter domination, with graceful exit from
inflation triggered by unstable de Sitter vacua. This can be
achieved by appropriately choosing either or both the form
of the mimetic potential or the function 𝐹(𝑅). The price to
pay would eventually be a considerable complexity in the
functional form of both, which of course does not represent
a first principle obstacle [138].

3.4. Mimetic Horndeski Gravity. One can further consider
more general scalar-tensor theories, which can be “mime-
tized” according to the procedures we have described so
far, namely, through a singular disformal transformation or
through a Lagrange multiplier term in the action enforcing
the mimetic constraint. In fact, analogously to GR, one can
show that the most general scalar-tensor model is invari-
ant under disformal transformations, provided the latter is
invertible. This has been shown in all generality in [104].
One can then “mimetize” such theories by considering the
following action [104]:

𝐼 = ∫𝑑4𝑥√−𝑔 [L (𝑔𝜇], 𝜕𝜆1𝑔𝜇], . . . , 𝜕𝜆1 ⋅ ⋅ ⋅ 𝜕𝜆𝑝𝑔𝜇], 𝜙,
𝜕𝜆1𝜙, . . . , 𝜕𝜆1 ⋅ ⋅ ⋅ 𝜕𝜆𝑞𝜙) + 𝜆 (𝑔𝜇]𝜕𝜇𝜙𝜕]𝜙 + 1)] ,

(88)

where 𝑝, 𝑞 ≥ 2 are integers and L is the Lagrangian density
which is a function of the metric and the mimetic field. In
general, the constraint enforced by the Lagrange multiplier
can be generalized to 𝑏(𝜙)𝑔𝜇]𝜕𝜇𝜙𝜕]𝜙 = −1, but for the sake of
simplicity we will set 𝑏(𝜙) = 1 here and redirect the reader
to the work of [104] for more general discussions, and for
the explicit form of the equations of motion. In fact, setting𝑏(𝜙) ̸= 1 is basically equivalent to assigning a potential to the
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mimetic field. In [104] it was shown that the two approaches
to mimetic Horndeski gravity, namely, singular disformal
transformation and Lagrange multiplier, are equivalent.

Of course, the considerations made above can be applied
in the case of a specific scalar-tensor model, namely, Horn-
deski gravity [275] (see, e.g., [420–438] for further recent
work on the topic of Horndeski gravity and theories beyond
Horndeski). Recall that Horndeski gravity is themost general
4D local scalar-tensor theory with equations of motion no
higher than second order. The Horndeski action can be
written as a sum of four terms:

𝐼 = ∫𝑑4𝑥√−𝑔L𝐻 = ∫𝑑4𝑥√−𝑔∑
𝑛
L𝑛, (89)

whereL𝑛s read

L0 = 𝐾 (𝑋, 𝜙) ,
L1 = −𝐺3 (𝑋, 𝜙) ◻𝜙,
L2 = 𝐺4,𝑋 (𝑋, 𝜙) [(◻𝜙)2 − (∇𝜇∇]𝜙)2] + 𝑅𝐺4 (𝑋, 𝜙) ,
L3 = −16𝐺5,𝑋 (𝑋, 𝜙)
⋅ [(◻𝜙)3 − 3◻𝜙 (∇𝜇∇]𝜙)2 + 2 (∇𝜇∇]𝜙)3]
+ 𝐺𝜇]∇𝜇∇]𝜙𝐺5 (𝑋, 𝜙) ,

(90)

where 𝑋 ≡ −𝑔𝜇]∇𝜇𝜙∇]𝜙/2, (∇𝜇∇]𝜙) ≡ ∇𝜇∇]𝜙∇𝜇∇]𝜙,(∇𝜇∇]𝜙)3 ≡ ∇𝜇∇]𝜙∇𝜇∇𝜌𝜙∇]∇𝜌𝜙, the functions 𝐾(𝑋, 𝜙),𝐺3(𝑋, 𝜙), 𝐺4(𝑋, 𝜙), 𝐺5(𝑋, 𝜙) are free, and 𝑋 denotes differ-
entiation with respect to𝑋.

The mimetic version of the above Horndeski model has
been studied in a variety of papers recently (e.g., [104, 114,
128]). We report some particular cases taken into considera-
tion.We remark that the freedom in the free functions𝐾,𝐺3,𝐺4, and 𝐺5, as well as in the function 𝑏(𝜙) (which, when ̸= 1,
is equivalent to providing a potential for the mimetic field),
results in the possibility of reproducing basically any given
expansion scenario of the universe. A specific model studied
in [104] is one where the functions take the form:

𝐾(𝑋, 𝜙) = 𝑐2𝑋,
𝐺3 (𝑋, 𝜙) = 0,
𝐺4 (𝑋, 𝜙) = 12 ,
𝐺5 (𝑋, 𝜙) = 0.

(91)

In this case, on a flat FLRW background the solution is given
by

𝑎 (𝑡) = 𝑡2/3(1+𝑤),
𝜙 (𝑡) = ±√− 𝛼𝑐2 ln(

𝑡𝑡0) ,
𝑏 (𝜙) = − 1̇𝜙2 ,

(92)

with 𝑡0 and integration constant and𝛼 = −8𝑤/3(1+𝑤)2.Thus,
we see that the scenario under consideration has reproduced
the expansion history of a universe filled with a perfect fluid
with EoS 𝑤 [104]. Another case considered in [104] is the
mimetic cubic Galileon model, where the functions take the
following form:

𝐾(𝑋, 𝜙) = 𝑐2𝑋,
𝐺3 (𝑋, 𝜙) = 2𝑐3Λ̃3𝑋,
𝐺4 (𝑋, 𝜙) = 12 ,
𝐺5 (𝑋, 𝜙) = 0,

(93)

where the cut-off scale is subsequently set to Λ̃ = 1. It is then
found that the model can reproduce the expansion history
of a universe filled with nonrelativistic matter, followed by
a cosmological constant dominated expansion analogous to
the late-time acceleration we are experiencing [104].The case
of a nonminimal coupling to the auxiliary metric, 𝑔𝜇] was
examined as well, which we will not report on here and for
which we will redirect the reader to the original paper [104].

To conclude, we report on the following specific case of
mimetic Horndeski model which was studied in [114]. The
Horndeski part of the action of the theory is given by

𝐼𝐻 = ∫𝑑4𝑥√−𝑔 [𝛼 (𝑋𝑅 + (◻𝜙)2 − ∇𝜇∇]𝜙∇𝜇∇]𝜙)
+ 𝛾𝜙𝐺𝜇]∇𝜇∇]𝜙 − 𝛽𝜙◻𝜙] , (94)

which corresponds to the following choice for the functions
discussed previously:

𝐾(𝑋, 𝜙) = 0,
𝐺3 (𝑋, 𝜙) = 𝛽𝜙,
𝐺4 (𝑋, 𝜙) = 𝛼𝑋,
𝐺5 (𝑋, 𝜙) = 0.

(95)

A number of solutions, including cosmological bounces,
inflation unified with late-time acceleration, and future sin-
gularities, have been discussed. As a specific example, on a
flat FLRW background, the following choice of potential for
the mimetic field [114],

𝑉 (𝜙) = −𝛽 + 2𝑉0 + 3𝑉20𝑐1 (𝜙 − 𝜙0)2 , (96)

gives rise to the following solution:

𝐻(𝑡) = 𝑉0𝑐1 (𝑡 − 𝑡0) , (97)

which represents a regular bounce solution. Another bounce
solution can be obtained by considering the following poten-
tial [114]:

𝑉 (𝜙) = 𝑏2𝑐1 sinh2 𝑏𝜙cosh2 𝑏𝜙 , (98)
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for which the scale factor and correspondingly the Hubble
parameter read:

𝑎 (𝑡) = 𝑎0cosh 𝑏𝑡,
𝐻 (𝑡) = 𝑏 sinh 𝑏𝑡

cosh 𝑏𝑡 .
(99)

In Section 5 we will present a detailed discussion on a specific
mimetic Horndeski model, constructed as an extension of a
covariant Hořava-like theory of gravity.

3.5. Einstein-Aether Theories, Hořava-Lifshitz Gravity, and
Covariant Renormalizable Gravity. In closing, we comment
on some connections between mimetic gravity and other
theories of modified gravity, such connections having been
identified recently: namely, the scalar Einstein-aether theory,
Hořava-Lifshitz gravity, and a covariant realization of the
latter, that is, covariant renormalizable gravity.

3.5.1. Einstein-Aether Theories. An interesting connection
which can be identified is that between mimetic gravity
and Einstein-aether theories [276, 277] (see also [278–280,
439–444]). These are a class of Lorentz-violating generally
covariant extensions of GR. By Lorentz-violating generally
covariant wemean that Lorentz invariance is preserved at the
level of the action, only to be broken dynamically. In fact, the
theory contains a unit time-like vector 𝑢𝜇 (which is called
the aether) whose norm is fixed by a Lagrange multiplier
term in the action. This entails the fixing of a preferred rest
frame at each space-time point. In fact, mimetic gravity itself
dynamically violates Lorentz symmetry because the gradient
of the mimetic field fixes a preferred direction in space-time.

To be precise, mimetic gravity is in correspondence with
a particular version of the Einstein-aether theory, namely, the
scalar Einstein-aether theory [77, 145]. In this theory, the role
of aether is played by the gradient of a scalar field, precisely
as occurs in mimetic gravity: the role of aether is played by
the four-velocity vector which in turn is the gradient of the
mimetic field. It should be noted that the scalar Einstein-
aether theory is quite different from the original vector
theory. Moreover, in the case where the potential for the
potential for the scalar field in such theories (corresponding
to the potential for the mimetic field in mimetic gravity) is
constant, themodel corresponds to the IR limit of projectable
Hořava-Lifshitz gravity, whichwewill comment on further in
Section 3.5.2.

3.5.2. Hořava-Lifshitz Gravity. Recall that Hořava-Lifshitz
gravity [338] (HLG hereafter) is a framework and candidate
theory of quantum gravity, wherein gravity is made power-
counting renormalizable by altering the graviton propagator
in the UV.This is achieved by abandoning Lorentz symmetry
as a fundamental symmetry of nature, in favour of a Lifshitz
anisotropic scaling in the UV. For an incomplete list of ref-
erences concerning further work in Hořava-Lifshitz gravity,
see, for instance, [339–363] and references therein. If the lapse
function in HLG is only a function of time, that is,𝑁 = 𝑁(𝑡),
the theory takes the name of projectable Hořava-Lifshitz

gravity. Recall that in the Arnowitt-Deser-Misner decompo-
sition of space-time [445]:

𝑑𝑠2 = −𝑁2𝑐2𝑑𝑡2 + 𝑔𝑖𝑗 (𝑑𝑥𝑖 + 𝑁𝑖𝑑𝑡) (𝑑𝑥𝑗 + 𝑁𝑗𝑑𝑡) , (100)

the function𝑁 takes the name of lapse.
Previous work has shown that the IR limit of the nonpro-

jectable version of Hořava-Lifshitz gravity can be obtained
from the Einstein-aether theory (the vector version) by
requiring that the aether be hypersurface orthogonal: that is,𝑢𝜇 = 𝑁∇𝜇𝑇, where 𝑇 is a scalar field and𝑁 is chosen in such
a way to ensure 𝑢𝜇 has unit norm. In this case𝑇 is responsible
for the preferred foliation inHořava gravity, and𝑁 is the lapse
function. If 𝑇 is set equal to coordinate time, the resulting
action is that of nonprojectable Hořava gravity [357, 443].

Further requiring that 𝑁𝑑𝑇 = 𝑆, where 𝑆 is a scalar
field, reduces the vector Einstein-aether theory to the scalar
Einstein-aether theory [446].This condition implies that𝑁 =𝑁(𝑇), which upon identification of 𝑇 with coordinate time
corresponds exactly to the defining condition for projectable
Hořava gravity. In this case, the unit norm constraint cannot
be solved for a generic 𝑁 but has to be imposed at the level
of the action, for instance, via a Lagrange multiplier term∝ 𝜆(∇𝜇𝑆∇𝜇𝑆 − 1). Therefore, the condition under which𝑑𝑆 = 𝑁𝑑𝑇 is invariant is that 𝑆 be invariant under a shift
symmetry: 𝑆 → 𝑆 + 𝑑𝑆, which shows why the equivalence
between scalar Einstein-aether theory and mimetic gravity
fails if a nonzero potential for the mimetic field is included
[446]. Notice also that, as is known, dark matter emerges as
an integration constant in the IR limit of projectable Hořava-
Lifshitz gravity [354]. Given the correspondence between this
theory and mimetic gravity, then, it should not come as a
surprise that dark matter emerges in a similar fashion within
the framework of mimetic gravity, as a purely geometrical
effect.

A complete proof of the equivalence between mimetic
gravity and the IR limit of projectable Hořava-Lifshitz gravity
was presented in [135]. In particular, it was shown that the
action for the IR limit of projectable Hořava-Lifshitz gravity
can be written as𝑆 = 𝑆EH

+ ∫𝑑4𝑥√−𝑔 [Σ2 (𝑔𝜇]𝜕𝜇𝜙𝜕]𝜙 + 1) + 𝛾2 (◻𝜙)2] ,
(101)

which we immediately recognize as the action for mimetic
gravity without potential, with the addition of a higher
derivative term which, as we shall see shortly, was actually
added shortly after the original formulation of the theory on
purely phenomenological grounds, to cure some undesirable
properties at the perturbation level. In Hořava-Lifshitz grav-
ity, Σ is a Lagrange multiplier which had been introduced
to enforce the projectability condition. This equivalence was
demonstrated rigorously in Appendix A of [135]. Therefore,
mimetic gravity appears in the IR limit of a candidate theory
of quantum gravity.

3.5.3. Covariant Renormalizable Gravity. Recall that HLG
achieves power-counting renormalizability by breaking dif-
feomorphism invariance. However, this breaking appears
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explicitly at the level of the action. This has been at the
center of criticism, which has related this explicit breaking
to the appearance of unphysical modes in the theory which is
coupled strongly in the IR [350, 351, 357–359]. Therefore, in
order to circumvent these issues it would be desirable to have
a theory which preserves the renormalizability properties of
Hořava gravity in the UV but retains diffeomorphism invari-
ance at the level of the action. Therefore, diffeomorphism
invariance should be broken dynamically in the UV.

An example of such theory has been presented by Nojiri
and Odintsov [356, 361, 362] (see also [364–372]) and comes
under the name of covariant renormalizable gravity (CRG
henceforth). The theory features a nonstandard coupling of
a perfect fluid to gravity. When considering perturbations
around a flat background, this nonstandard coupling dynam-
ically breaks diffeomorphism invariance. The price to pay is
the presence of this exotic fluid, which could have a stringy
origin. In particular, one formulation of CRG introduces
the fluid via a Lagrange multiplier term, precisely as done
in mimetic gravity. For this reason, in the limit where the
nonstandard coupling of the fluid to gravity disappears, one
recovers the action ofmimetic gravity. In one of its equivalent
formulations, the action of CRG is given by [356, 361, 362]

𝐼 = ∫𝑑4𝑥√−𝑔{𝑅2 − 𝛼 [(𝜕𝜇𝜙𝜕]𝜙∇𝜇∇] + 2𝑈0∇𝜌∇𝜌)𝑛
⋅ (𝜕𝜇𝜙𝜕]𝜙𝑅𝜇] + 𝑈0𝑅)]2 −𝜆(12𝜕𝜇𝜙𝜕𝜇𝜙 + 𝑈0)} ,

(102)

where 𝑈0 and 𝛼 are constants and 𝑈0 = 1/2 to recover the
mimetic constraint. In particular, the above case corresponds
to the 𝑧 = 2𝑛 + 2 version of CRG, where 𝑧 is the dynamical
critical exponent which quantifies the degree of anisotropy
between space and time in the UV regime of the theory.

Following the initial proposal by Nojiri and Odintsov,
other CRG-like models were studied in recent years. For
instance, one particular CRG-like model was studied by
Cognola et al. in [367], where black hole and de Sitter
solutions were also studied. The action of such CRG-like
theory takes the following form [367]:

𝐼 = 12 ∫𝑑4𝑥√−𝑔{𝑅 − 2Λ
− 𝛼 [(𝑅𝜇] − 𝑅2 𝑔𝜇])∇𝜇𝜙∇]𝜙]

𝑛

− 𝜆2 (𝑔𝜇]∇𝜇𝜙∇]𝜙 + 1) − 𝑉 (𝜙)} .
(103)

In the above action, the Horndeski-like coupling of the scalar
field to curvature (for the case 𝑛 = 1) has been considered
copiously in the literature; for an incomplete list see, for
instance, [420, 426, 433, 447–455] and references therein.

In the continuation of our review, after a brief interlude
on perturbations in mimetic gravity, we shall consider a
case study of a mimetic-like theory. Our choice of case
study will fall upon the CRG-like model of Cognola et al.
as defined by the action in (103). We shall study in detail
its cosmological solutions and perturbations around a flat

background. A pathological behaviour of the model when
considering perturbations around a flat FLRW background
will be cured by appropriately modifying the model.

4. A Brief Interlude: Cosmological
Perturbations in Mimetic Gravity

Before proceeding to the case study of a specific mimetic-like
model, it is mandatory to discuss the issue of perturbations
in mimetic gravity. Recall in Section 2 that we remarked
that mimetic gravity does not properly belong to the class
of modified theories of gravity with a full extra scalar degree
of freedom. Instead, the additional scalar is constrained by
the Lagrange multiplier, a situation quite different from, for
instance, that of Horndeski models which have a proper
scalar degree of freedom.

However, it is clear that the Lagrange multiplier kills
the wave-like parts of the scalar degree of freedom: in
other words, given that the constraint takes out any higher
derivative, it is not possible to have oscillating (wave-like
solutions). As a consequence, we can already envisage that
the sound speed in the minimal mimetic gravity model will
satisfy 𝑐𝑠 = 0. This implies, as we have anticipated, that there
are no propagating scalar degrees of freedom in the theory.

Theproperty of vanishing sound speed inmimetic gravity
can be rigorously demonstrated, by considering small longi-
tudinal perturbations around a flat background [73].The line
element is then given by

𝑑𝑠2 = − (1 + 2Φ (𝑡, x)) 𝑑𝑡2
+ 𝑎2 (𝑡) (1 − 2Ψ (𝑡, x)) 𝛿𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗,

𝑖, 𝑗 = 1, 2, 3.
(104)

Φ ≡ Φ(𝑡, x) and Ψ ≡ Ψ(𝑡, x) are functions of the space-time
coordinates such that |Φ(𝑡, 𝑥)|, |Ψ(𝑡, 𝑥)| ≪ 1, and 𝑔00(𝑡, 𝑥) ≃−1 + 2Φ(𝑡, 𝑥), 𝑔11(𝑡, 𝑥) ≃ 𝑎(𝑡)−2(1 + 2Ψ(𝑡, 𝑥)). Here, we
used the conformal Newtonian gauge. Moreover, from field
equations we also have

Φ (𝑡, x) = Ψ (𝑡, x) . (105)

Correspondingly, given that around a flat FLRW background
the mimetic field plays the role of “clock,” we perturb it as

𝜙 = 𝑡 + 𝛿𝜙 (𝑡, x) , (106)

where |𝛿𝜙| ≡ |𝛿𝜙(𝑡, 𝑥)| ≪ 1, which together with (3) implies
that

Φ = 𝛿 ̇𝜙. (107)

Then, by perturbing the 0𝑖 components of the Einstein equa-
tions, a relatively straightforward calculation [73] shows that
the evolution equation for the perturbation to the mimetic
field, 𝛿𝜙, satisfies the following equation:

̈𝛿𝜙 + 𝐻 ̇𝛿𝜙 + �̇�𝛿𝜙 = 0. (108)
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The aforementioned pathological property of perturbations
in mimetic gravity can be noticed from (108). The evolution
equation for perturbations to the mimetic field does not
depend on the Laplacian (or in general on spatial deriva-
tives) of the latter. In other words, there is no term of the
form 𝑐2𝑠 Δ𝛿𝜙 in (108), which implies that the sound speed
is identically zero. This means that, even when pressure
is nonvanishing, the dust degree of freedom induced in
mimetic gravity behaves as dust with zero sound speed, and
as such quantum perturbations to the mimetic field cannot
be defined in the usual fashion. Else, they would fail in
providing the seeds for the observed large-scale structure
of the universe which grow via gravitational instability. We
remark once more that this behaviour is not unexpected,
given that the condition enforced by the Lagrange multiplier
eliminates wave degrees of freedom. Moreover, this fact has
been shown in all generality for mimetic Horndeski models
in [128].

In order to have a theory whose quantum perturbations
can be defined in a sensible way, the minimal action for
mimetic gravity has to bemodified, for instance, by introduc-
ing higher derivative (HD) terms. As an example, consider
the following action [73]:

𝐼 = 𝑑4𝑥√−𝑔 [𝑅 + 𝜆 (𝑔𝜇]𝜕𝜇𝜙𝜕]𝜙 + 1) − 𝑉 (𝜙)
+ 12𝛾 (◻𝜙)2] .

(109)

The corresponding equations of motion read

𝐺𝜇] = [𝑉 + 𝛾 (𝜕𝛼𝜙𝜕𝛼𝜒)] 𝛿𝜇] + 2𝜆𝜕𝜇𝜙𝜕]𝜙
− 𝛾 (𝜕𝜇𝜒𝜕]𝜙 + 𝜕𝜇𝜙𝜕]𝜒) , (110)

where 𝜒 ≡ ◻𝜙. Thus, identification of the mimetic field with
time on a flat FLRW background implies that 𝜒 = 3𝐻. There
are two main effects of the introduction of the specific HD
termon the theory: one at the level of the background and one
at the level of perturbations. At the level of the background, it
can easily be shown that the Friedmann equation is modified
from (32) to [73]

2�̇� + 3𝐻2 = 22 − 3𝛾𝑉, (111)

which corresponds to a renormalization of the amplitude of
the potential. At the level of perturbations, it can be shown
that (108) is modified to the following [73]:

̈𝛿𝜙 + 𝐻 ̇𝛿𝜙 − 𝑐2𝑠𝑎2Δ𝛿𝜙 + �̇�𝛿𝜙 = 0, (112)

where

𝑐2𝑠 = 𝛾2 − 3𝛾 . (113)

Therefore, the addition of the higher derivative term results
in a small but nonvanishing sound speed, which implies that
the behaviour of mimetic matter deviates from the usual
perfect fluid dust. The nonvanishing sound speed also results
in the possibility of defining quantum perturbations in a
sensible way. It is beyond the scope of our review to provide

further technical details on the matter, but it can be shown
that the simple model we have just described is capable of
producing red-tilted (i.e., 𝑛𝑠 < 1) scalar perturbations which
are enhanced over gravity waves (implying a small value of𝑟), which is consistent with observations from Planck and
BICEP2/Keck Array [73].

In concluding this brief interlude, let us also spare a few
words on further modifications of mimetic gravity involving
higher derivative terms. These have been studied in [84, 85],
in particular by adding the previously discussed (◻𝜙)2 term,
as well as a term proportional to ∇𝜇∇]𝜙∇𝜇∇]𝜙. It was noticed
that these terms affect the growth of perturbations below the
sound horizon, in particular suppressing the growth of those
with large momenta. The result is the presence of a cut-off in
the matter power spectrum for perturbations below a certain
wavelength. On larger scales, instead, the predictions for the
matter power spectrummatch those of collisionless cold dark
matter.

The suppression of power on small scales is particularly
intriguing in the light of the observation that the collisionless
cold dark matter paradigm appears to suffer from a number
of shortcomings on subgalactic scales.The core-cusp problem
refers to the discrepancy between 𝑁-body simulations of
collisionless cold dark matter, which predict a cuspy pro-
file for the dark matter halo in galaxies, and observations
which instead suggest a cored profile towards the center.
The discrepancy is particularly large for dwarf galaxies, but
indications that a cored profile is favoured for larger galaxies
as well persist (see, e.g., [456–460]). Moreover, these same
simulations predict an abundance of substructure which is
approximately 10 times larger than what we actually observe,
an issuewhich is referred to as the “missing satellites problem”
(see, e.g., [461–463]). Although this problem is most acute
for satellite galaxies, it exists for field galaxies as well (e.g.,
[464]). To make matters worse, the most massive subhalos in
these simulations find no observed counterpart, despite one
would expect star formation to bemore efficient within them:
this is known as the “too big to fail problem” (see, e.g., [465–
468]). For an incomplete list of comprehensive reviews on
these issues, refer, for instance, to [469, 470] and references
therein.

Several approaches to solving these problems exist in the
literature. If one insists that dark matter is cold and collision-
less, then an important role must be played by the baryonic
content of the universe. In fact, it has been argued in several
works that baryonic feedback processes (see, e.g., [471–480])
due to supernovae or to the stellar and gaseous content
of galaxies, or dynamical friction between dark matter and
baryon clumps (see, e.g., [481, 482]), can in principle solve or
at least alleviate these problems. Alternatively, the small-scale
discrepancies might be taken as an indication that something
is lacking in the collisionless cold dark matter picture, with
DM possibly having sizeable self-interactions. This approach
has been undertaken in a number of works; see, for instance,
[483–492] and references therein. In particular, a possibility
which has received a lot of attention recently is that where the
paucity of structure on small scales is explained bymodifying
the properties of dark matter in such a way that the resulting
matter power spectrum is suppressed at large wavenumbers,
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by coupling the dark matter to a bath of dark radiation (e.g.,
a massless or light dark photon) or to a light scalar, which
delays kinetic decoupling; refer, for instance, to [493–507]
and references therein.

Adifferentmechanism, butwith similar outcomes, occurs
in mimetic gravity. Namely, the suppression of small-scale
power, operated by the higher derivative terms, has the
potential to solve the missing satellite problem and the
too big to fail problem, as shown in [84]. Moreover, the
same higher derivative terms could potentially also cure the
caustic singularities from which mimetic gravity suffers. The
reason for this is that the higher derivative terms effectively
correspond to terms parametrizing dissipation, or viscosity,
which emerges due to the fact that the velocity dispersion of
the dust is now nonzero. Actually, in [84] it was also argued
that these same dissipative terms could alleviate the core-cusp
problem. Although these discussions remain preliminary, it
is very interesting to note that modifying the action for
mimetic gravity by the addition of higher derivative terms
could provide a solution to the small-scale structure puzzles
of collisionless cold dark matter.

5. A Case Study: Mimetic Horndeski
Covariant Holava-Like Gravity

Having discussed in detail the physics behind mimetic
gravity, andmany of its extensions, we now provide a detailed
case study of a specific mimetic model. Our choice falls on
the covariant Hořava-like theory of gravity first discussed by
Cognola et al. [367], with action defined by (103). We will
argue that this model can be viewed as a mimetic Horndeski
model. We will study the model, its background solutions,
and scalar perturbations in detail. Not unexpectedly, we will
find that the sound speed of the minimal model is vanishing,
and thus quantum perturbations cannot be defined in the
usual way. To circumvent this problem, we modify the
model by the addition of higher order terms, repeating the
analysis of background solutions and scalar perturbations,
and show that it will be necessary to go beyond theHorndeski
framework in order to have a nonvanishing sound speed.The
discussion in this section is largely based on the work of [131].

5.1.Mimetic CovariantHořava-LikeGravity. Let us start from
the action of the CRG-like model first discussed by Cognola
et al. [367], which is given by the following:

𝐼 = 12 ∫𝑑4𝑥√−𝑔{𝑅 − 2Λ
− 𝛼 [(𝑅𝜇] − 𝛽2𝑅𝑔𝜇])∇𝜇𝜙∇]𝜙]

𝑛

− 𝜆(12𝑔𝜇]𝜕𝜇𝜙𝜕]𝜙 + 𝑈0)} ,
(114)

where 𝛼, 𝛽 are arbitrary constants, Λ is the cosmological
constant, 𝑛 is a natural number, 𝜆 is a Lagrange multiplier,
and 𝑈0 determines the constraint imposed on the gradient
of the cosmological field 𝜙. Recall that the Horndeski-like

coupling in the action above, for 𝑛 = 1, has been considered in
several works (e.g., [420, 433, 447–455]). If we set 𝑈0 = 1/2,
we see that the constraint on the gradient of the scalar field
corresponds precisely to that of mimetic gravity (3).Thus, we
can extend the model to include the mimetic field by adding
a potential for the scalar field, which is nowmade dynamical.
The action now reads

𝐼 = 12 ∫𝑑4𝑥√−𝑔{𝑅 − 2Λ
− 𝛼 [(𝑅𝜇] − 𝑅2 𝑔𝜇])∇𝜇𝜙∇]𝜙]

𝑛

− 𝜆2 (𝑔𝜇]𝜕𝜇𝜙𝜕]𝜙 + 1) − 𝑉 (𝜙)} ,
(115)

where we have set the dimensionless parameter 𝛽 = 1 and
added a potential for the mimetic field, 𝑉(𝜙). Variation with
respect to 𝜆 immediately leads to (3), whereas variation with
respect to the field modifies (7) to

𝑑𝑉 (𝜙)𝑑𝜙 = ∇𝜇 [(2𝑛𝛼𝐹𝑛−1𝐺𝜇] + 𝜆𝑔𝜇]) 𝜕]𝜙]
= 1√−𝑔𝜕𝜇 {√−𝑔 [(2𝑛𝛼𝐹𝑛−1𝐺𝜇] + 𝜆𝑔𝜇]) 𝜕]𝜙]} ,

(116)

where we define the following quantities:

𝐹 ≡ 𝑇𝜇]𝑅𝜇] − 𝑅𝑇2 ,
𝑇𝜇] ≡ ∇𝜇𝜙∇]𝜙, 𝑇 ≡ 𝑔𝜇]𝑇𝜇] = −1.

(117)

Finally, variation of the actionwith respect to themetric leads
to the gravitational field equations, which for this theory read

𝐺𝜇] + Λ𝑔𝜇] + 𝛼2𝐹𝑛𝑔𝜇]
= 𝑛𝛼𝐹𝑛−1 [𝑅𝜌𝜇𝑇𝜌] + 𝑅𝜌]𝑇𝜌𝜇 − 12 (𝑇𝑅𝜇] + 𝑅𝑇𝜇])]
+ 𝜆2𝑇𝜇]
+ 𝑛𝛼 [𝐷𝛼𝛽𝜇] (𝑇𝛼𝛽𝐹𝑛−1) − 12𝐷𝜇] (𝑇𝐹𝑛−1)]
+ Ω𝛼𝛽 𝛿𝑇𝛼𝛽𝛿𝑔𝜇] − 𝑔𝜇]𝑉 (𝜙)2 ,

(118)

where we have defined the differential operators:

𝐷𝛼𝛽𝜇] ≡ 14 [(𝑔𝜇𝛼𝑔]𝛽 + 𝑔]𝛼𝑔𝜇𝛽) ◻
+ 𝑔𝜇] (∇𝛼∇𝛽 + ∇𝛽∇𝛼)
− (𝑔𝜇𝛼∇𝛽∇] + 𝑔]𝛼∇𝛽∇𝜇 + 𝑔𝜇𝛽∇𝛼∇] + 𝑔]𝛽∇𝛼∇𝜇)] ,

𝐷𝜇] ≡ 𝑔𝜇]◻ − 12 (∇𝜇∇] + ∇]∇𝜇) ,
(119)
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where ◻ ≡ ∇𝑖∇𝑖 is the d’Alembertian operator. Note that in
the above (118), Ω𝜇] is a tensor that will not play any role
if 𝑇𝜇] does not depend on the metric, which we assume is
our case; thus, we can drop it from the gravitational field
equations. Finally, the form of the Lagrange multiplier 𝜆 can
be determined from the trace of (118):

− 𝑅 + 4Λ − 𝜆2𝑇
= 2𝛼𝐹𝑛 (𝑛 − 1)
+ 𝑛𝛼2 (𝑔𝜇]◻ + ∇𝜇∇] + ∇]∇𝜇) (𝑇𝜇]𝐹𝑛−1)
− 3𝑛𝛼2 ◻ (𝑇𝐹𝑛−1) − 2𝑉 (𝜙) .

(120)

We will consider the case with 𝑛 = 1, which is particularly
interesting given that it is equivalent to a specific instance of
a mimetic Horndeski model.

5.1.1. Cosmological Solutions. Let us now consider cosmolog-
ical solutions, in particular considering a flat FLRW metric
(10). If we take the hypersurfaces of constant time to be
equal to those of constant 𝜙, by making use of the mimetic
constraint (3), we see that the field can be identified (up to an
integration constant) with time:

𝜙 = 𝑡. (121)

As in the original mimetic gravity, the scalar field can induce
an effective cold dark matter component given that, from
(7), one has −(𝐺 − 𝑇) ∝ 𝑎3, and recall that −(𝐺 − 𝑇) gives
the energy density of the perfect dust-like fluid induced by
mimetic field (or, more precisely, by its gradient which plays
the role of 4-velocity field). However, the introduction of
additional terms depending on the field in the action (115)
changes these features. Here, we would like to study the
behaviour of mimetic field and the cosmological solutions of
the more involved theory (115).

Let us begin by considering the tensor 𝑇𝜇] in (117), which
reads

𝑇00 = ̇𝜙2 = 1,
𝑇0𝑖 = 𝑇𝑖0 = 𝑇𝑖𝑗 = 0, 𝑖, 𝑗 = 1, 2, 3. (122)

The, from (116) we derive

1𝑎3 𝜕0 [𝑎3 (2𝑛𝛼 (3𝐻2)𝑛 − 𝜆)] = 𝑑𝑉 (𝜙)𝑑𝜙 . (123)

Given the mimetic constraint (3), this equation is a conse-
quence of the two EOMs inferred from (118):

0 = Λ − 3𝐻2 + 𝛼2 (1 − 4𝑛) (3𝐻2)𝑛 + 𝜆2 + 𝑉 (𝜙)2 , (124)

0 = Λ − 3𝐻2 − 2�̇� + 𝛼2 (1 − 2𝑛) (3𝐻2)𝑛
+ 3𝑛−1𝛼𝑛 (1 − 2𝑛) �̇�𝐻2𝑛−2 + 𝑉 (𝜙)2 . (125)

In our analysis, as the second independent equation, together,
with (123), we choose the trace equation (120): namely,

𝜆2 = 6�̇� + 12𝐻2 − 4Λ + 𝛼 (5𝑛 − 2) (3𝐻2)𝑛
+ 3𝑛𝑛𝛼 (2𝑛 − 1)𝐻2𝑛−2�̇� − 2𝑉 (𝜙) . (126)

For the simplest case 𝑉(𝜙) = 0, from (123) we get

[2𝑛𝛼 (3𝐻2)𝑛 − 𝜆] = 𝐶0𝑎3 , (127)

where 𝐶0 is an integration constant. Thus, in the limit 𝛼 = 0,
we recover the original mimetic gravity model of [69], while
when 𝛼 ̸= 0 we may interpret this equation as a generalized
Friedmann equation, with 𝐶0 determining the amount of
dark matter in the universe (given that its contribution scales
with scale factor 𝑎 as 𝑎−3, as is expected for dust). Moreover,
in the limits given by

1 ≪ 𝛼, 𝑛 = 1,
1𝛼𝑛−1 ≪ 𝑅, 1 < 𝑛, (128)

if we neglect the cosmological constant Λ, as well as the
integration constant 𝐶0, one gets from (126)

− �̇�𝐻2 = 2𝑛 . (129)

Thus, if 1/𝛼𝑛−1 is set at the scale of the early-time acceleration,
models with 1 ≪ 𝑛 lead to cosmological solutions for
inflation.

In the case where we set 𝑛 = 1, the parameter 𝛼
is dimensionless and the EOMs are second order, which
is not surprising given that our model is a special case
of Horndeski’s theory. Therefore, we can incorporate the
cosmological constant in the potential and obtain from (123),
(126) that

𝑑𝑉𝑑𝑡 = 1𝑎3 𝜕0 [𝑎3 (6𝛼𝐻2 − 𝜆)] , (130)

𝜆 = 6 (2 + 𝛼) �̇� + 6 (4 + 3𝛼)𝐻2 − 4𝑉 (𝜙) , (131)

where we have taken into account that 𝑉 ≡ 𝑉(𝜙) = 𝑉(𝑡) on
the FLRW space-time, so that we can replace the potential
derivative of the field with its time derivative.

Let us manipulate (125) further, which gives

2�̇� + 3𝐻2 = 𝑉(2 + 𝛼) , (132)

showing that the model we are considering is essentially
equivalent to the model proposed in [73]. Since (130) is a
consequence of (131) and (132), we may choose to infer the
cosmological solutions from (132) only. This equation is a
nonlinear Riccati type equation and can be transformed in
the linear second-order differential equation:

�̈� − 34 (2 + 𝛼)𝑉𝑢 = 0, (133)
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by introducing the Sturm-Liouville canonical substitution

𝐻 = 23 �̇�𝑢 ,
𝑎 = 𝑢2/3. (134)

Let us discuss some examples by starting from (133). If𝑉 = 𝑉0
is constant, we recover the de Sitter solution:

𝑢 ∼ exp [3𝐻0𝑡2 ] ,
𝑎 ∼ exp [𝐻0𝑡] ,

𝐻0 = 23√ 3𝑉04 (2 + 𝛼) .
(135)

Another well-motivated choice for the potential is a quadratic
one:

𝑉 (𝜙) = 3 (2 + 𝛼) [𝐻20
+ 𝛽2 (2𝜙 − 𝜙0) (−𝐻0 + 𝛽24 (2𝜙 − 𝜙0)) − 23𝛽2] ,

(136)

where 𝐻0 is a constant Hubble parameter and 𝛽, 𝜙0 are
dimensional constants (in the specific case [𝛽] = [𝜙−10 ] =[𝐻]). After the identification 𝜙 = 𝑡 the explicit solution for𝑢 is found to be

𝑢 (𝑡) = 𝑢0𝑒(3/2)𝐻0𝑡−(3𝛽2/4)𝑡(𝑡−2𝑡0), 𝑡0 ≡ 𝜙02 , (137)

with 𝑢0 constant and 𝑡0 a fixed time.TheHubble parameter is
given by

𝐻 ≡ 23 �̇�𝑢 = 𝐻0 − 𝛽2 (𝑡 − 𝑡0) , (138)

and we see that, for 𝑡 close to 𝑡0, one has a quasi-de Sitter
expansion, while for large 𝑡0 ≪ 𝑡, the Hubble parameter
tends to vanish. This solution corresponds to a Starobinsky-
like accelerated expansion [188] in the Jordan frame and gives
an interesting inflationary solution.

Let us provide one final example with a potential given by

𝑉 (𝜙) = 4𝐴2 (2 + 𝛼)3 cosh𝐴𝜙1 + cosh𝐴𝜙, (139)

where 0 < 𝐴 is a constant with mass-dimension 1. The
corresponding solution is given by

𝑢 (𝑡) = 1 + cosh𝐴𝑡,
𝑎 = (1 + cosh𝐴𝑡)2/3 ,
𝐻 = 2𝐴3 sinh𝐴𝑡(1 + cosh𝐴𝑡) .

(140)

This solution represents a cosmological bounce with −∞ <𝑡, 𝜙 < +∞ and shows that the mimetic field may act as a
phantom fluid.

5.1.2. Cosmological Scalar Perturbations. In this section, we
will consider the scalar perturbations around the FLRW
metric (10) in the model defined by (115) with 𝑛 = 1, analyzed
in the previous section. The perturbed metric in conformal
Newtonian gauge is given by (104). Concerning perturbations
to the mimetic field, we obtain once more (106) which leads
to (107) once more. Note that in this case the identity (105),
which is valid for the original mimetic dark matter model, is
no longer true. Furthermore, we notice that

𝑇00 = 1 + 2𝛿 ̇𝜙,
𝑇0𝑖 = 𝜕𝑖𝛿𝜙,
𝑇 = −1 + O (Φ2) .

(141)

From the (1, 2)-component of (118), we obtain

𝐺12 (1 − 𝛼2 ) = 𝛼𝐷𝛼𝛽12𝑇𝛼𝛽, (142)

with

𝐺12 = −𝜕𝑥𝜕𝑦 (Φ − Ψ) ,
𝐷𝛼𝛽12𝑇𝛼𝛽 = 𝐻𝜕𝑥𝜕𝑦𝛿𝜙 + 𝜕𝑥𝜕𝑦𝛿 ̇𝜙. (143)

Therefore, we obtain

Ψ = Φ + ( 2𝛼2 − 𝛼) (𝐻𝛿𝜙 + 𝛿 ̇𝜙) . (144)

From (0, 1)-component of (118) we derive

𝐺01 (1 + 𝛼2 ) = 𝛼�̇�𝜕𝑥𝛿𝜙 + 𝜆2 𝜕𝑥𝛿𝜙 + 𝛼𝐷𝛼𝛽01𝑇𝛼𝛽, (145)

with

𝐺01 = 2𝜕𝑥 (Ψ̇ + 𝐻Φ) ,
𝐷𝛼𝛽01𝑇𝛼𝛽 = − (𝐻2 + �̇�) 𝜕𝑥𝛿𝜙,

𝜆 = 6𝛼𝐻2 − 4�̇� − 2𝛼�̇�,
(146)

where the last equality is a consequence of (131), (132).
Finally, we can obtain a closed equation for 𝛿𝜙, which

reads

𝛿 ̈𝜙 + 𝐻𝛿 ̇𝜙 + �̇�𝛿𝜙 = 0. (147)

From the above we immediately read that the sound speed is
vanishing, given that there is no dependence on the Laplacian
of 𝛿𝜙. The implications are that in these kinds of models,
scalar perturbations do not propagate (as in the original
mimetic model of [73]), rendering the usual definition of
quantum perturbations quite problematic. Given that this
feature is rooted in themodel being of themimeticHorndeski
form [128], to address the problem, either we must take 𝑛 ̸= 1
in (103) or we must modify the original action along the lines
of [73, 84].
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5.2. Modified Higher Order Mimetic Horndeski Model. With
our goal being that of addressing the problem of scalar
perturbations, we modify the model given by (115) for 𝑛 = 1
as

𝐼 = 12 ∫𝑑4𝑥√−𝑔[𝑅 (1 + 𝑎𝑔𝜇]∇𝜇𝜙∇]𝜙) − 𝑐2 (◻𝜙)2
+ 𝑏2 (∇𝜇∇]𝜙)2 − 𝜆2 (𝑔𝜇]∇𝜇𝜙∇]𝜙 + 1) − 𝑉 (𝜙)] .

(148)

The original model given by (103) for 𝑛 = 1 is recovered for𝑎 = 𝛼/2 and 𝑏 = 𝑐 = 2𝛼 by using the following identity [508]:
− 12𝑔𝜇]∇𝜇𝜙∇]𝜙𝑅 + (◻𝜙)2 − (∇𝜇∇]𝜙)2= 𝐺𝜇]∇𝜇𝜙∇]𝜙 + total derivative. (149)

On the other hand, for generic values of 𝑎, 𝑏, 𝑐, the action
(148) describes a higher order derivative model in the scalar
sector with field equations at the fourth order; namely,

(1 − 𝑎) 𝐺𝜇] = 12𝑔𝜇] [𝑏2𝜙𝛼𝛽𝜙𝛼𝛽 − 𝑐2 (◻𝜙)2 − 𝑉 (𝜙)]
+ 𝜆∇𝜇𝜙∇]𝜙 − 𝑏𝜙𝜇𝜌𝜙𝜌] + 𝑏2𝑔𝛼𝛽 [∇𝛼 (𝜙𝜇]∇𝛽𝜙)
− ∇𝛼 (𝜙𝜇𝛽∇]𝜙) − ∇𝛼 (𝜙]𝛽∇𝜇𝜙)] + 𝑐 [𝜙𝜇]
+ 𝑔𝜇]𝑔𝛼𝛽∇𝛼 (◻𝜙∇𝛽𝜙) − ∇𝜇◻𝜙∇]𝜙 − ∇]◻𝜙∇𝜇𝜙] ,

(150)

where we adopted the notation
𝜙𝛼𝛽 ≡ ∇𝛼∇𝛽𝜙. (151)

Let us explore some cosmological applications. On a flat FRW
metric (10), (132) is modified as follows:

2�̇� + 𝑐ℎ𝐻2 = 𝑐V𝑉 (𝜙) , (152)
where

𝑐ℎ ≡ 12𝑎 + 3𝑏 − 9𝑐 − 124𝑎 + 𝑏 − 3𝑐 − 4 ,
𝑐V ≡ 24 − 4𝑎 − 𝑏 + 3𝑐 .

(153)

It is understood that by setting 𝑎 = 𝛼/2 and 𝑏 = 𝑐 = 2𝛼, we
recover (132). Similarly to how we proceeded in the previous
section, we can rewrite (152) as

�̈� − 𝑐ℎ𝑐V𝑉 (𝜙)4 𝑢 = 0, (154)

where we introduced the auxiliary function 𝑢:
𝐻 = 2𝑐ℎ

�̇�𝑢 ,
𝑎 (𝑡) = 𝑢2/𝑐ℎ .

(155)

By choosing the following potential:

𝑉 (𝜙) = 9𝑐ℎ𝑐V [𝐻20
+ 𝛽2 (2𝜙 − 𝜙0) (−𝐻0 + 𝛽24 (2𝜙 − 𝜙0)) − 23𝛽2] ,

(156)

with 𝐻0, 𝛽, 𝜙0 dimensional constants, we recover the
Starobinsky-like solution (137) and (138). If we choose the
following potential:

𝑉 (𝜙) = 4𝐴2𝑐V𝑐ℎ
cosh𝐴𝜙1 + cosh𝐴𝜙, (157)

with 0 < 𝐴 being a constant, we recover the bounce
solution (140). Therefore, we can recover all the solutions of
the Horndeski-like model previously analyzed. We will now
study the scalar perturbations around FRW space-time.

5.2.1. Cosmological Scalar Perturbations. If we consider the
perturbed metric (104) and the perturbed field (106), we
still recover (107) and (141). Therefore, from the (𝑖, 𝑗)-
components, 𝑖, 𝑗 = 1, 2, 3 of (150), we obtain now

Ψ = Φ + 𝑏2 − 2𝑎 (𝛿 ̇𝜙 + 𝐻𝛿𝜙) . (158)

Moreover, from the components (0, 𝑖) or (𝑖, 0), 𝑖 = 1, 2, 3 of
(150), we derive

𝛿 ̈𝜙 + 𝐻𝛿 ̇𝜙 − 𝑐2𝑠𝑎2∇2𝛿𝜙 + �̇�𝛿𝜙 = 0, (159)

where the nonvanishing squared sound speed 𝑐2𝑠 reads
𝑐2𝑠 ≡ 𝑏 − 𝑐2𝑐2 , 𝑐2 ≡ (2 + 𝑏 − 2𝑎) (4 + 3𝑐 − 4𝑎 − 𝑏)4 (𝑎 − 1) . (160)

We immediately note that 𝑐2𝑠 = 0 when 𝑏 = 𝑐 and we
recover (147). Since only for 𝑏 = 𝑐 does the model fall within
the Horndeski class, we can consider (𝑏 − 𝑐) as being the
Horndeski breaking parameter. This also confirms that, in
order to obtain a nonvanishing sound speed, it is necessary to
go beyond the mimetic Horndeski framework: that is, 𝑏 ̸= 𝑐.
The result is analogous to that obtained in [73, 84].

6. Spherically Symmetric Solutions
in Mimetic Gravity

In this section, we will explore static spherically symmetric
solutions (SSS) in mimetic gravity. To do so, let us return to
the general formulation of mimetic gravity with action given
by (11). Variation of the action with respect to the metric with
the mimetic constraint (3) simply leads to

𝐺𝜇] = 𝜆2𝑔𝜇]𝜕𝜇𝜙𝜕]𝜙 − 𝑔𝜇]𝑉 (𝜙)2 , (161)

namely, (118) with 𝛼 = 0 andΛ = 0.The trace of this equation
reads

𝑅 = 𝜆2 + 2𝑉 (𝜙) . (162)

Thus, from (161), we get

𝐺𝜇] = (𝑅 − 2𝑉 (𝜙)) 𝜕𝜇𝜙𝜕]𝜙 − 12𝑔𝜇]𝑉 (𝜙) . (163)

The continuity equation of the mimetic field is derived as

1√−𝑔𝜕] (√−𝑔𝜆𝜕]𝜙) = 𝑑𝑉 (𝜙)𝑑𝜙 , (164)

which is automatically satisfied when (163) holds true.
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In this chapter we will consider pseudo-SSS space-times,
whose general topological formulation is given by

𝑑𝑠2 = −𝑎 (𝑟)2 𝑏 (𝑟) 𝑑𝑡2 + 𝑑𝑟2𝑏 (𝑟)
+ 𝑟2 ( 𝑑𝜌21 − 𝑘𝜌2 + 𝜌2𝑑𝜙2) ,

(165)

where 𝑎(𝑟), 𝑏(𝑟) are functions of the radial coordinate 𝑟 and
the manifold is a sphere when 𝑘 = 1, a torus when 𝑘 = 0, or a
compact hyperbolic manifold when 𝑘 = −1. The Ricci scalar
in this case reads

𝑅 = − 1𝑟2 [3𝑟2𝑏󸀠 (𝑟) 𝑎
󸀠 (𝑟)𝑎 (𝑟) + 𝑟2𝑏󸀠󸀠 (𝑟)

+ 2𝑟2𝑏 (𝑟) 𝑎󸀠󸀠 (𝑟)𝑎 (𝑟) + 4𝑟𝑏󸀠 (𝑟) + 4𝑟𝑏 (𝑟) 𝑎
󸀠 (𝑟)𝑎 (𝑟)

+ 2𝑏 (𝑟) − 2𝑘] ,
(166)

where the prime denotes a derivative with respect to 𝑟. The
symmetries of the EOMs require the mimetic field to be a
function of 𝑟 only: namely, 𝜙 ≡ 𝜙(𝑟), and from (3) one has

𝜙󸀠 (𝑟) = √− 1𝑏 (𝑟) , (167)

leading to a pure imaginary expression for the field, which
is to be expected from a time-like vector 𝜕𝜇𝜙 with temporal
component equal to zero. Therefore, it is clear that the
correspondence with the dark matter is only formal, which
justifies the introduction of the potential tomake themimetic
field dynamical and possibly reproduce the dark matter
phenomenology, since the four-velocity vector 𝑢𝜇 in (9)
cannot be physical. This has been explored in [119] and will
be discussed in Section 7.

The (0, 0)- and (1, 1)-components of the field equations
(164) lead to (to derive the EOMs, one may plug the
expression for the Ricci scalar directly into the action to
obtain, after integration by parts [509], L = 2𝑎(1 − 𝑟𝑏󸀠(𝑟)− 𝑏(𝑟)) + 𝑎(𝑟)𝑟2𝜆(𝑏(𝑟)𝜙󸀠(𝑟)2 + 1) − 𝑎(𝑟)𝑟2𝑉(𝜙). Thus, the
derivatives with respect to 𝑎(𝑟) and 𝑏(𝑟) with (3) lead to (168)
and (170), while the derivation with respect to 𝜙 leads to
(171)):

𝑘 − 𝑏󸀠 (𝑟) 𝑟 − 𝑏 (𝑟) = 𝑉 (𝜙) 𝑟22 , (168)

(𝑏󸀠 (𝑟) 𝑟 + 2𝑟𝑎󸀠 (𝑟)𝑎 (𝑟) 𝑏 (𝑟) + 𝑏 (𝑟) − 𝑘)
= 𝜆2 𝑏 (𝑟) 𝑟2𝜙󸀠 (𝑟)2 − 𝑉 (𝜙) 𝑟

2

2 ,
(169)

where 𝜆 is given by (162).
We can also rewrite (169) with (167)-(168) as

4𝑎󸀠 (𝑟) 𝑏 (𝑟) = −𝜆𝑎 (𝑟) 𝑟. (170)

Finally, from (164), one finds the following:

𝑑𝑑𝑟 (𝑎 (𝑟) 𝑏 (𝑟) 𝜆𝑟2𝜙󸀠) = 𝑎 (𝑟) 𝑟2 𝑑𝑉 (𝜙)𝑑𝜙 . (171)

As a first investigation, we will consider the case where
potential is equal to zero, that is, vacuum solutions.

6.1. Vacuum Solutions. In this subsection we set 𝑉(𝜙) = 0.
From (168) we immediately see that

𝑏 (𝑟) = (𝑘 − 𝑟𝑠𝑟 ) , (172)

with 𝑟𝑠 being a mass scale, either positive or negative, while
the second field equation (169) with (162) and (166) leads to

𝑎 (𝑟) = 𝑎1 + 𝑎2√1 − 𝑘𝑟𝑠/𝑟 [[(
√1 − 𝑘𝑟𝑠𝑟 )

⋅ log[[√
𝑟𝑟0 (1 + √1 −

𝑘𝑟𝑠𝑟 )]] − 1
]
] , 𝑘 = ±1,

(173)

𝑎 (𝑟) = 𝑎1 + 𝑎2 [2( 𝑟𝑟0)
3/2 + 3] , (174)

with 𝑎1, 𝑎2 being constants and 𝑟0 a length scale. If 𝑎2 = 0,
namely, 𝑅 = 0 and 𝜆 = 0, we recover the topological
Schwarzschild solution of General Relativity. When 𝑎2 ̸= 0,
we can pose 𝑎1 = 0.Thus, the solution for flat topology (𝑘 = 0)
is as follows:

𝑑𝑠2 = −𝑎22 [2( 𝑟𝑟0)
3/2 + 3]2 (𝑟𝑠𝑟 ) 𝑑𝑡2 + 𝑑𝑟2(𝑟𝑠/𝑟)

+ 𝑟2 (𝑑𝜌2 + 𝜌2𝑑𝜙2) , 0 < 𝑟𝑠,
(175)

where 𝑟𝑠 = −𝑟𝑠 has to be positive to preserve the metric
signature. The Ricci scalar is nonzero and reads

𝑅 = − 6𝑟
2𝑟3 + 3 (𝑟/𝑟0)3/2 𝑟30 . (176)

This solution presents a naked singularity at 𝑟 = 0, as for the
corresponding topological case 𝑘 = 0 of the Schwarzschild
metric.

The spherical case (𝑘 = 1) is the more interesting and is
given by

𝑑𝑠2 = −𝑎22 [(√1 − 𝑟𝑠𝑟 ) log[√ 𝑟𝑟0 (1 + √1 −
𝑟𝑠𝑟 )]

− 1]2 𝑑𝑡2 + 𝑑𝑟2(1 − 𝑟𝑠/𝑟) + 𝑟2 (𝑑𝜃2 + sin2 𝜃 𝑑𝜙2) ,
(177)

where we have introduced the polar coordinates 𝜃, 𝜙 in the
angular part (see also [79]). In this case the Ricci scalar reads
𝑅
= − 1𝑟2 [(√1 − 𝑟𝑠/𝑟) log [√𝑟/𝑟0 (1 + √1 − 𝑟𝑠/𝑟)] − 1] .

(178)
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For 𝑟𝑠 < 0 the metric is regular everywhere, but when 0 < 𝑟𝑠,
the solution is regular and preserves the signature; only in
the region 𝑟𝑠 < 𝑟 the solution is regular and preserves the
signature; since for 𝑟 < 𝑟𝑠 the metric coefficient 𝑔00(𝑟) ≡−𝑎2(𝑟)𝑏(𝑟) acquires an imaginary part. In this respect, we note
that the special choice 𝑟𝑠 = 𝑟0 when 𝑟 < 𝑟𝑠 leads to

𝑔00 (𝑟) ≡ 𝑎 (𝑟)2 𝑏 (𝑟)
= −𝑎22 (√𝑟𝑠𝑟 − 1 arctan [√𝑟𝑠𝑟 − 1] + 1)

2 , (179)

which is real and negative.
In general, we observe that when 0 < 𝑟𝑠, the point𝑟 = 𝑟𝑠 cannot represent a horizon like for the Schwarzschild

space-time, due to the fact that 𝑔11(𝑟) ≡ 1/𝑏(𝑟) diverges but𝑔00(𝑟) = −𝑎22 and the Ricci scalar are regular (we also cannot
associate with 𝑟 = 𝑟𝑠 any thermodynamical quantity such as
temperature 𝑇 = (𝑎(𝑟)/2)𝑑𝑏(𝑟)/𝑑𝑟 which diverges at 𝑟 = 𝑟𝑠);
moreover, for 𝑟 < 𝑟𝑠 the metric becomes imaginary (or, in
the special case 𝑟𝑠 = 𝑟0, it acquires the signature (−+++)) and
does not allow a wormhole description.

Finally, the topological case 𝑘 = −1 reads
𝑑𝑠2 = −𝑎22 [(√1 + 𝑟𝑠𝑟 ) log[√ 𝑟𝑟0 (1 + √1 +

𝑟𝑠𝑟 )]

− 1]2 𝑑𝑡2 + 𝑑𝑟2(−1 − 𝑟𝑠/𝑟) + 𝑟2 (
𝑑𝜌21 + 𝜌2

+ 𝜌2𝑑𝜙2) ,

(180)

and the Ricci scalar is given by

𝑅
= − 1𝑟2 [(√1 + 𝑟𝑠/𝑟) log [√𝑟/𝑟0 (1 + √1 + 𝑟𝑠/𝑟)] − 1] .

(181)

In this case, for 0 < 𝑟𝑠, the metric coefficient 𝑔11(𝑟) ≡ 1/𝑏(𝑟)
is negative and the solution is unphysical. On the other hand,
for 𝑟𝑠 < 0, we obtain 0 < 𝑔11(𝑟) when 𝑟 < −𝑟𝑠, but 𝑔00(𝑟) ≡−𝑎2(𝑟)𝑏(𝑟) becomes imaginary (except for the special choice𝑟0 = −𝑟𝑠).
6.2. Nonvacuum Solutions. In this subsection, we will con-
sider the case 𝑉(𝜙) ̸= 0. We immediately see that, for 𝑉(𝜙) =2Λ with Λ a cosmological constant, one solution of (168) and
(169) with Λ = 0 is the topological Schwarzschild de Sitter
solution:

𝑏 (𝑟) = 𝑘 − 𝑟𝑠𝑟 − Λ𝑟
2

3 ,
𝑎 (𝑟) = 𝑎1,

(182)

with 𝑟𝑠, 𝑎1 being constants.

In considering other solutions, we will take the spherical
case 𝑘 = 1 in (165). By using (167) one readily obtains from
(170) and (171) that

𝜙 (𝑟) = ±𝑖 ∫ 𝑑𝑟√𝑏 (𝑟) ,
4 𝑑𝑑𝑟 (𝑎󸀠 (𝑟) 𝑏 (𝑟)3/2 𝑟) = 𝑎 (𝑟) 𝑟2√𝑏 (𝑟)𝑑𝑉 (𝑟)𝑑𝑟 ,

(183)

where we treat the potential as a function of 𝑟. These two
equations with (168) can be used to reconstruct the potential
when a choice for 𝑏(𝑟) is made. We will now provide some
examples of the reconstruction technique.

Let us consider a linearmodification to the Schwarzschild
metric:

𝑏 (𝑟) = (1 − 𝑟𝑠𝑟 + 𝛾𝑟) , (184)

with 𝑟𝑠, 𝛾 being constants whose mass-dimension is positive,
such that from (168) we obtain

𝑉 (𝑟) = −4𝛾𝑟 . (185)

The corresponding solution for the mimetic field is found to
be an elliptic function, and explicit expressions can be given
only in limiting cases.When 𝑟 ≈ 𝑟𝑠, one can neglect the linear
correction in (184) to recover the solution in (172) and (173)
with 𝑘 = 1. Thus, the mimetic field reads

𝜙(𝑟 ≪ √𝑟𝑠𝛾 )
≃ ±𝑖 [𝑟√1 − 𝑟𝑠𝑟 + 𝑟𝑠2 log [2𝑟 (1 + √1 − 𝑟𝑠𝑟 ) − 𝑟𝑠]] ,

(186)

or, by expanding the result around 𝑟 = 𝑟𝑠,
𝜙 (𝑟 ≃ 𝑟𝑠) ≃ 𝜙𝑠 ± 2𝑖√𝑟𝑠 (𝑟 − 𝑟𝑠),

𝑟 ≃ 𝑟𝑠 − (𝜙𝑠 − 𝜙)24𝑟𝑠 , (187)

with 𝜙𝑠 = ±(𝑖𝑟𝑠/2)log(𝑟𝑠). The explicit form of the potential at𝑟 ≃ 𝑟𝑠, 𝜙 ≃ 𝜙𝑠 is found to be

𝑉 (𝜙 ≃ 𝜙𝑠) ≃ −4𝛾𝑟𝑠 −
𝛾 (𝜙𝑠 − 𝜙)2𝑟3𝑠 . (188)

On the other hand, for large distances, we may ignore the
Newtonian term in (184) and from the second equation in
(183) we derive

𝑎(√ 𝑟𝑠𝛾 ≪ 𝑟)
≃ 𝑐1 (4 + 6𝛾𝑟) + 3𝑐2√1 + 𝛾𝑟 − 𝑐2 (2 + 3𝛾𝑟) arctan [√1 + 𝛾𝑟]√1 + 𝛾𝑟 ,

(189)
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with 𝑐1,2 dimensional constants. We can choose 𝑐1 = 1/4 and𝑐2 = 0, and in the given limit the metric simply reads

𝑑𝑠2(√𝑟𝑠𝛾 ≪ 𝑟) ≃ −(1 + 3𝛾𝑟2 )2 𝑑𝑡2 + 𝑑𝑟2(1 + 𝛾𝑟)
+ 𝑟2 (𝑑𝜃2 + sin2 𝜃 𝑑𝜙2) .

(190)

The corresponding expressions for the field and the potential
are given by

𝜙 (𝑟) ≃ ±2𝑖√1 + 𝑟𝛾𝛾 , 𝑟 ≃ −4 + 𝛾2𝜙24𝛾 ,
𝑉 (𝜙) ≃ 16𝛾24 + 𝛾2𝜙 (𝑟)2 .

(191)

Here, we must require 4/𝛾2 < |𝜙|2 in order to guarantee the
positivity of 𝑟. The behaviour of the potential can be derived
by interpolating the expressions in (188) and (191).

The metric under investigation reduces to the usual
Schwarzschild space-time for short distances, while at large
distances its 00-component behaves as

𝑔00(√𝑟𝑠𝛾 ≪ 𝑟) ≃ −(1 + 3𝛾𝑟2 )2 . (192)

Therefore, the corresponding Newtonian potential Φ(𝑟) =−(𝑔00(𝑟) + 1)/2 acquires linear and quadratic contributions
with respect to theNewtonian solution.The quadratic correc-
tion can be viewed as a negative cosmological constant in the
background and can be ignored if 𝛾2𝑟2 is sufficiently small.
On the other hand, the linear term (for 𝛾 > 0) could help
in explaining the inferred flatness of galactic rotation curves,
which has been interpreted as one of the key evidences for
the presence of dark matter. We will return to this issue in
the next section and analyze the problem more closely there,
where we will provide ametric whose cosmological constant-
like contribution is independent from the linear one.

As a second example of reconstruction procedure, we
consider the following ansatz:

𝑏 (𝑟) = 1 − 𝑟2𝑠𝑟2 , (193)

with 𝑟𝑠 being once more a positive dimensional constant.
From (168) we get

𝑉 (𝑟) = −2𝑟2𝑠𝑟4 , (194)

and the metric is fixed by making use of the second equation
in (183) which leads to

𝑎 (𝑟) = [𝑐1 + 𝑐2 arctan [𝑟/√𝑟2𝑠 − 𝑟2]]
√1 − 𝑟2𝑠 /𝑟2 . (195)

The metric signature for 𝑟𝑠 < 𝑟 is preserved when 𝑐2 = 0, and
by choosing 𝑐1 = 1 we obtain

𝑑𝑠2 = −𝑑𝑡2 + 𝑑𝑟2(1 − 𝑟2𝑠 /𝑟2) + 𝑟2 (𝑑𝜃2 + sin2 𝜃 𝑑𝜙2) . (196)

The field and the potential are found to be

𝜙 = ±𝑖𝑟√1 − 𝑟2𝑠𝑟2 , 𝑟 = √𝑟2𝑠 − 𝜙2,
𝑉 (𝜙) = − 2𝑟2𝑠(𝑟2𝑠 − 𝜙2)2 .

(197)

The radial coordinate is always real and positive.
The above metric (196) is very interesting, given that

it may be used to describe a traversable wormhole (see,
e.g., [510–534] and references therein; see also [535–549] for
recent work on the subject), where the space is divided into
two spherical holes connected by a “throat” located at 𝑟 = 𝑟𝑠.
Moreover, the metric satisfies the following requirements:

(1) 𝑔00(𝑟) and 𝑔−111 (𝑟) are well defined for all 𝑟𝑠 ≤ 𝑟.
(2) 𝑔00(𝑟) is regular on the throat with 𝑔00+(𝑟𝑠) = 𝑔00−(𝑟𝑠)

and 𝑔󸀠00+(𝑟𝑠) = 𝑔󸀠00−(𝑟𝑠).
(3) 𝑔−111 (𝑟𝑠) = 0 and 0 < 𝑔−111 (𝑟) for all 𝑟𝑠 < 𝑟.
(4) Given 𝑔11(𝑟)−1 = [1 − �̃�(𝑟)/𝑟], we have �̃�󸀠+(𝑟𝑠) =�̃�󸀠−(𝑟𝑠) < 1.

The above correspond to the traversability conditions [512,
515], and thus we conclude that the wormhole described by
our solution is traversable. We also note that our space-time
is asymptotically flat.

In the next section we will use a different approach
to fix 𝑎(𝑡)2𝑏(𝑟), which encodes the physical Newtonian
potential, in order to apply mimetic gravity to reproduce the
phenomenology of galactic rotation curves.

7. Rotation Curves of Galaxies in Mimetic
Gravity

So far we have seen that, within mimetic gravity, dark matter
emerges as a geometrical effect at a cosmological level, that is,
in the form of a perfect fluid whose energy density decays as𝑎−3. However, one of the first (and probably most renown)
clues as to the presence of dark matter came not from
cosmological scales but from astrophysical ones. In fact, it
was the observations of Vera Rubin, alongwith her colleagues
Kent Ford, David Burstein, and Norbert Thonnard, that
galactic rotation curves were asymptotically flat or even
slightly growing with radius 𝑟, far beyond the region where
luminous matter is present, which signalled the presence
of something unexpected [4–6]. In fact, if luminous matter
was the only thing responsible for the shape of the inferred
rotation curves, simple classical mechanics calculations dic-
tate that such curve should fall as Vrot(𝑟) ∝ 1/√𝑟, which
clearly did not match what was observed. Therefore, it would
be interesting to see whether it is possible, within mimetic
gravity, to explain the shape of galactic rotation curves, thus
fulfilling the requirements of a successful theory of dark
matter on both cosmological and astrophysical scales.

The first solution to this problem was found in [119]. The
key idea is closely related to that ofMOND[550]: to introduce
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a new scale in the theory, relating it to either the scale where
predictions of Newtonian gravity fail or to a scale intrinsically
present in the rotation curves data. The work of [119] has
drawn from two classes of examples in the literature: the
static solution of conformal Weyl gravity [551], used in such
context in [552–555], and solutions in 𝑓(𝑅) = 𝑅𝑛 gravity
[556], used in [557–559]. Let us begin by considering the first
cases, which feature linear and quadratic corrections to the
Schwarzschild metric.

For our purpose, it is convenient to redefine

𝑎 (𝑟) = 𝑎 (𝑟)2 𝑏 (𝑟) , (198)

within the metric (165) with 𝑘 = 1: namely,

𝑑𝑠2 = −𝑎 (𝑡) 𝑑𝑡2 + 𝑑𝑟2𝑏 (𝑟) + 𝑟2 (𝑟2𝑑𝜃2 + sin2 𝜃 𝑑𝜙2) . (199)

Since

𝑎 (𝑟) = √𝑎 (𝑟)𝑏 (𝑟) ,
𝑎󸀠 (𝑟) = 12√𝑎 (𝑟) 𝑏 (𝑟) (𝑎󸀠 (𝑟) − 𝑎 (𝑟) 𝑏

󸀠 (𝑟)𝑏 (𝑟) ) ,
(200)

by using (168) the second equation in (183) reads

𝑑𝑑𝑟 [(𝑎󸀠 (𝑟) 𝑏 (𝑟) − 𝑎 (𝑟) 𝑏󸀠 (𝑟)) 𝑟√𝑎 (𝑟)]
= √𝑎 (𝑟) [−𝑏󸀠󸀠 (𝑟) 𝑟 − 2𝑟 (1 − 𝑏 (𝑟))] .

(201)

We choose the following ansatz for 𝑎(𝑟):
𝑎 (𝑟) = 1 − 𝑟𝑠𝑟 + 𝛾𝑟 − 𝜆0𝑟2, (202)

with 𝑟𝑠, 𝜆0, and 𝛾 being positive dimensional constants. Given
the metric element 𝑔00(𝑟) = −𝑎(𝑟), the Newtonian potential
reads

Φ (𝑟) = −(𝑔00 (𝑟) + 1)2 . (203)

Thus, the Newtonian potential associated with (202) can be
described in the following way:

(1) At small distances, the metric leads to a classical
Newtonian term 𝑟𝑠/𝑟.

(2) At very large distances, the “cosmological constant”
term 𝜆0𝑟2 emerges, reflecting the fact that the metric
is immersed in a cosmological de Sitter background.

(3) At intermediate distance the linear term 𝛾𝑟
appears, revealing a new feature with respect to
the Schwarzschild de Sitter metric at galactic scales.

At intermediate galactic scales, we can safely assume that the𝜆0𝑟2 term is negligible; hence, the Newtonian potential (203)
reads

Φ (𝑟) ≃ − 𝑟𝑠2𝑟 (1 − 𝛾𝑟
2

𝑟𝑠 ) . (204)

Correspondingly, the rotational velocity profile reads

V2rot ≃ V2Newt + 𝛾𝑐2𝑟2 , (205)

where we reintroduced the speed of light 𝑐 and VNewt is the
contribution expected from the luminousmatter component.
Therefore, on sufficiently large scales, Vrot does not fall-off as
per theKeplerian result 1/√𝑟 but increases slightly as√𝑟.This
is particularly true for galaxies where the falling Newtonian
contribution cannot compete with the rising determined by
the 𝛾 term (depending of course on the size of 𝛾0), which
occurs for small and medium sized low surface brightness
(LSB) galaxies. In fact rotation curve results for such galaxies
exhibit precisely this behaviour (see, e.g., discussion in [554]
in the context of conformalWeyl gravity): that is, the rotation
curves of these galaxies start rising immediately.

The situation is different for sufficiently extended galaxies,
for instance, large high surface brightness (HSB) galaxies. For
these galaxies theNewtonian contributionmight be sufficient
to complete with the rising linear term, ∝ 𝛾𝑟. This leads to
a region of approximate flatness before any rise starts and is
consistent with the data for such galaxies (see, e.g., [554]).
Moreover, for these galaxies 𝑟might be sufficiently large that
the de Sitter term∝ 𝑟2 should be taken into account. Because
of the negative sign, the effect of this term is to reduce the
velocity; thus, the rotational velocity profile is given by

V2 ≃ V2Newt + 𝛾𝑐2𝑟2 − 𝜆0𝑐2𝑟2. (206)

Clearly, sufficiently far from the center of such galaxies, the
quadratic term takes over and arrests the rising behaviour
driven by the linear term. This is in perfect agreement with
data from HSB galaxies, which are large enough to feel the
effect of the de Sitter term. Moreover, the negative sign
in front of this term has another important implication:
given that V2 cannot go negative, bound orbits are no longer
possible on scales greater than𝑅 ∼ 𝛾0/2𝜆0.This could provide
a dynamical explanation for the maximum size of galaxies,
determined by the interplay between the linear (𝛾) and the
quadratic (𝜆0) terms.

Let us turn to the question of reproducing such behaviour
in mimetic gravity. In order to reconstruct the complete form
of the metric (199), we must use (201) to derive

𝑏 (𝑟)
= (1 − 𝑟𝑠/𝑟 + 𝛾𝑟 − 𝜆0𝑟2) (1 − 3𝑟𝑠/𝑟 + 𝛾𝑟/3 + 𝑐0/𝑟2)

(1 − 3𝑟𝑠/2𝑟 + 𝛾𝑟/2)2 , (207)

with 𝑐0 being a constant. The (on-shell) form of the potential
inferred from (168) is quite involved and results in

𝑉 (𝑟) = − 2
3𝑟2 (2𝑟 − 3𝑟𝑠 + 𝛾𝑟2)3 [54𝑟

2
𝑠 𝑟 − 27𝑟3𝑠

+ 171𝛾𝑟2𝑠 𝑟2 − 8𝛾2𝜆0𝑟7 + 𝑟4 (16𝛾 + 7𝑟𝑠𝛾2
+ 324𝑟𝑠𝜆0) + 4𝑟𝑠𝑟3 (−17𝛾 − 108𝑟𝑠𝜆0) + 𝑟6 (𝛾3
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− 44𝛾𝜆0) + 6𝑟5 (𝛾2 − 12𝜆0 + 12𝑟𝑠𝛾𝜆0)
− 12𝑐0 [−𝑟𝑠 + 2𝑟 (1 + 𝑟𝑠𝛾) + 2𝑟3 (𝛾2 + 𝜆0)
− 𝛾𝜆0𝑟4 + 3𝑟2 (𝛾 − 3𝑟𝑠𝜆0)]] .

(208)

Moreover, one uses the first equation in (183) to recover the
behaviour of the field which can be found only in the limiting
cases [119].

In the limit 𝛾 = 𝜆0 = 0 (corresponding to small
distances), one has

𝑎 (𝑟) ≃ 1 − 𝑟𝑠𝑟 ,
𝑏 (𝑟) ≃ 4 (𝑐0 + 𝑟 (𝑟 − 3𝑟𝑠)) (𝑟 − 𝑟𝑠)𝑟 (2𝑟 − 3𝑟𝑠)2 . (209)

Thus, if we set

𝑐0 = 9𝑟2𝑠4 , (210)

we have

𝑎 (𝑟) ≃ 1 − 𝑟𝑠𝑟 ,
𝑏 (𝑟) ≃ 1 − 𝑟𝑠𝑟 ;

(211)

namely, we recover the vacuum Schwarzschild solution of
General Relativity. Analogously to (186) and (187) we derive

𝜙 (𝑟 ≃ 𝑟𝑠) ≃ 𝜙𝑠 ± 2𝑖√𝑟𝑠 (𝑟 − 𝑟𝑠),
𝑟 ≃ 𝑟𝑠 − (𝜙𝑠 − 𝜙)24𝑟𝑠 , (212)

with 𝜙𝑠 = ±(𝑖𝑟𝑠/2) log [𝑟𝑠]. In this case the potential behaves
as given in the following:

𝑉 (𝜙 ≃ 𝜙𝑠) ≃ −32𝛾3𝑟𝑠 +
13𝛾 (𝜙 − 𝜙𝑠)2𝑟3𝑠 . (213)

In the limit 𝑟𝑠 = 𝛾 = 𝑐0 = 0 (cosmological scales) we obtain

𝑎 (𝑟) = 𝑏 (𝑟) ≃ (1 − 𝜆0𝑟2) , (214)

which corresponds to the static patch of the de Sitter solution.
Then, the field assumes the form

𝜙 ≃ ±𝑖arcsin [√𝜆0𝑟]√𝜆0 , 𝑟 ≃ ± sin [√𝜆0 󵄨󵄨󵄨󵄨𝜙󵄨󵄨󵄨󵄨]√𝜆0 . (215)

We note that 0 < 𝑟 as long as 0 < 𝑟 < 𝐻−10 ,
where 𝐻−10 = 1/√𝜆0 is the cosmological horizon of the

de Sitter solution with positive cosmological constant. The
corresponding behaviour of the potential is

𝑉 (𝜙)
≃ 6𝜆0
∓ 4𝛾3 ( √𝜆0

sin [√𝜆0 󵄨󵄨󵄨󵄨𝜙󵄨󵄨󵄨󵄨] + 4√𝜆0 sin [√𝜆0
󵄨󵄨󵄨󵄨𝜙󵄨󵄨󵄨󵄨]) .

(216)

This result with 𝛾 = 0 is consistent with [73].
Finally, in the limit 𝑟𝑠 = 𝜆0 = 𝑐0 = 0 of galactic scales, the

metric reads

𝑎 (𝑟) ≃ (1 + 𝛾𝑟) ,
𝑏 (𝑟) ≃ 4 (1 + 𝛾𝑟) (3 + 𝛾𝑟)

3 (2 + 𝛾𝑟)2 . (217)

In this case, the field is given by

𝜙 ≃ ± 𝑖2𝛾√3 (3 + 4𝛾𝑟 + 𝛾2𝑟2),

𝑟 ≃ −6 ∓ √9 − 12𝛾2𝜙2
3𝛾 ,

(218)

while the potential in (208) behaves as

𝑉 (𝑟) ≃ −2𝛾 (16 + 6𝛾𝑟 + 𝛾2𝑟2)3𝑟 (2 + 𝛾𝑟)3 . (219)

The explicit reconstruction of the potential at the galactic
scale must take into account that only the solutions with the
positive sign inside 𝑟 yield a positive radius for 0 < 𝛾. Thus,
we obtain

𝑉 (𝜙) = −2√3𝛾
2 (27 − 4𝛾2𝜙2 + 2√9 − 12𝛾2𝜙2)

(3 − 4𝛾2𝜙2)3/2 (−6 + √9 − 12𝛾2𝜙2) . (220)

In conclusion, we are able to describe, in limiting cases, the
behaviour of the potential 𝑉(𝜙) which leads to the solution
in (202) and (207) with the corresponding Newtonian poten-
tial in (204). The considered solution turns out to be the
Schwarzschild solution at small distances, the static patch
of the de Sitter space-time at cosmological distance, and,
most intriguingly, presents a linear term at the galactic scales
which can address the problem of galactic rotation curves
in mimetic gravity. We note that, from the dependence of
the potential on the field, the potential is always real, as it is
required for consistency.

To fix the values of 𝛾, 𝜆 in the metric, one needs the
data from rotation curves of galaxies. Since at the galactic
scale our metric reproduces the Newtonian potential (204),
while asymptotically it turns out to coincide with the de
Sitter metric, we can follow the analyses of [554, 555], where
the same potential has been found as a result of the Riegert
solution [551] of conformal Weyl gravity. Thus, we adopt the
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results in [554, 555], where the same parameters were fitted
to rotation curves. The total sample fitted consists of 138
galaxies, 25 of thembeing dwarf galaxies. Some of the galaxies
in the sample are sufficiently extended as to be sensitive to the
de Sitter quadratic term.We refer the reader to [554, 555] and
references therein for data on the galaxies included.

As per the analysis of [554, 555] the potential we
reconstructed yields an excellent fit to the rotation curves,
with a reduced 𝜒2 of ≈1. In fact, the linear and quadratic
corrections to the Newtonian potential capture the falling
and rising features in the rotation curves quantitatively rather
than barely qualitatively. The best-fit values to our 𝛾 and 𝜆0
parameters inmimetic gravity (202) turn out to be [554, 555]:

𝛾 ≃ 3.06 × 10−30 cm−1,
𝜆0 ≃ 9.54 × 10−54 cm−2. (221)

The parameter 𝜆0 is best expressed as ∼(100Mpc)−2,
suggesting that it is most important on scales of large galaxies
or clusters.

We previously mentioned that the idea adopted to fit
rotation curves resembles that ofMOND, that is, to introduce
a new scale in the theory, which could be a scale intrinsically
present in the data. Let us elaborate on this point more
quantitatively. Considering the measured distance 𝑅last and
rotational velocity Vlast of the outermost data in the rotation
curves, it can be shown that the combination 𝛾last ≡
Vlast/𝑐2𝑅last for each of the galaxies in the sample is, within
better than an order of magnitude, very close to the best-fit
value for 𝛾. In other words, the rotation curve data contain
a preferred scale, which we introduced through the non-
Newtonian correction.

We conclude this chapter by considering, for complete-
ness, the case of a general power-law correction:

𝑎 (𝑟) = 1 − 𝑟𝑠𝑟 + 𝛾𝑟𝑚 − 𝜆0𝑟2, (222)

with 𝑚 being a positive real parameter, with the full metric
given by (201); namely,

𝑏 (𝑟) = (4 (2 + 𝑚) 𝑟2 − 12 (2 + 𝑚) 𝑟𝑠𝑟 + 9 (2 + 𝑚) 𝑟2𝑠 − 4 (𝑚 − 2) 𝛾𝑟2+𝑚) (𝑟 − 𝑟𝑠 + 𝛾𝑟1+𝑚 − 𝜆0𝑟3)
(2 + 𝑚) 𝑟 (3𝑟𝑠 − 2𝑟 + (𝑚 − 2) 𝛾𝑟1+𝑚)2 . (223)

In deriving this last expression we have set the integration
constant in such a way as to recover the Schwarzschild
solution in the limit 𝛾 = 𝜆0 = 0, namely, at short distances.
On the other hand, at large distances, in the limit 𝑟𝑠 = 𝛾 = 0,
we once more find the static patch of the de Sitter solution.
Instead, at galactic scales, in the limit 𝑟𝑠 = 𝜆0 = 0, we obtain

𝑎 (𝑟) = 1 + 𝛾𝑚𝑟,
𝑏 (𝑟) ≃ 4 (1 + 𝛾𝑟𝑚) (2 + 𝑚 + 2𝛾𝑟𝑚 − 𝑚𝛾𝑟𝑚)

(2 + 𝑚) ((𝑚 − 2) 𝛾𝑟𝑚 − 2)2 . (224)

The potential can be found only in an implicit way and its on-
shell expression results in

𝑉 (𝑟) = 2𝑚2𝛾𝑟𝑚−2 (𝛾2𝑚2𝑟2𝑚 + 𝑚(8 − 6𝛾𝑟𝑚 − 4𝛾2𝑟2𝑚) + 4 (2 + 3𝛾𝑟𝑚 + 𝛾2𝑟2𝑚))
(2 + 𝑚) ((𝑚 − 2) 𝛾𝑟𝑚 − 2)3 . (225)

The trivial case𝑚 = 2 corresponds to a de Sitter-like solution
with negative cosmological constant (for 0 < 𝛾):

𝑎 (𝑟) = 𝑏 (𝑟) = 1 + 𝛾𝑟2, 𝑚 = 2. (226)

In this case the field is given by 𝜙 = ±𝑖 arcsinh[√𝛾𝑟]/√𝛾 and
the potential reads 𝑉(𝜙) ≃ −6𝛾.

The non-Newtonian correction we have considered has
recently been studied in the context of 𝑓(𝑅) gravity in [556].
In the low-energy limit of power-law 𝐹(𝑅) ∝ 𝑅𝑛 gravity, a𝑟𝑚 correction to the Newtonian potential emerges, with 𝑚
related to the power 𝑛 as
𝑚
= 12𝑛2 − 7𝑛 − 1 − √36𝑛4 + 12𝑛3 − 83𝑛2 + 50𝑛 + 16𝑛4 − 4𝑛 + 2 . (227)

Stability of the potential at large distances and constraints
from Solar System tests require 0 < 𝑚 < 1. In [556] the
above model was fitted to 15 LSB galaxies, and an excellent fit
is achieved, with best-fit value 𝑚 = 0.817 (corresponding to𝑛 = 3.5). Interestingly, the study [557] performs a similar fit to
two objects in [557]. The two objects, whose rotation curves
cannot be explained successfully by particle dark matter, are
the following: the dwarf galaxy Orion and the low luminosity
spiral NGC 3198 (which had not been analyzed in [556]). In
this case, an excellent fit is obtained for𝑚 = 0.7.

Let us conclude by making an important remark.
Although the potential leading to the chosen non-Newtonian
corrections has only been given implicitly, the form of 𝑏(𝑟)
has been provided explicitly, demonstrating how the desired
behaviour for galaxy rotation curves, consistent with data,
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can be obtained in mimetic gravity.This is a notable result, as
it implies that it is possible to reproduce the behaviour of dark
matter not only on cosmological scales in mimetic gravity,
but on astrophysical scales as well, solving the galaxy rotation
curves problem, which is one of the pillars of evidence for
dark matter.

8. Conclusion

Mimetic gravity has emerged as an interesting and viable
alternative to General Relativity, wherein the dark com-
ponents of the universe (underlying dark matter, the late-
time acceleration, and inflation) can find unified geometrical
explanation and interpretation. The theory is related to
General Relativity by a singular disformal transformation,
which is the reason behind its exhibiting a wider class
of solutions. Here, we have reviewed the main aspects of
mimetic gravity, beginning by placing it in the wider context
of theories of modified gravity. After having reviewed the
underlying theory behind mimetic gravity, we have studied
some of its solutions and extensions, such as mimetic 𝑓(𝑅)
gravity, mimetic unimodular gravity, and others, focusing on
the reconstruction technique which allows the realization of
numerous wishful cosmological expansion scenarios. After
having discussed the issue of perturbations within the theory,
we have considered a specific mimetic-like model, namely,
mimetic covariant Hořava-like gravity, wherein we applied
the concepts discussed in the first part of the review. The
final part of the review has been devoted to the study of static
spherically symmetric solutions within mimetic gravity, and
the application of these to the study of rotation curves within
such theory.

The dark components of our universe remain as myste-
rious as ever. It is possible that we might shed light on the
nature of darkmatter, dark energy, and inflation, asmore data
from experiments and surveys pours in the coming years.
Thus far, theories of modified gravity, despite their prima
facie complications, appear as viable and theoretically well-
motivated routes to pursue. This is true for mimetic gravity
as well, and thus we expect it to remain an active arena of
research in the field of modified gravity in the coming years.

Competing Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

Sunny Vagnozzi thanks the Niels Bohr Institute, where the
majority of this work was completed, for hospitality. The
authors have benefited from many discussions with Sergei
Odintsov and Sergio Zerbini, whom we wish to thank.

References

[1] J. H. Oort, “The force exerted by the stellar system in the
direction perpendicular to the galactic plane and some related

problems,” Bulletin of the Astronomical Institutes of the Nether-
lands, vol. 6, article 249, 1932.

[2] F. Zwicky, “DieRotverschiebung von extragalaktischenNebeln,”
Helvetica Physica Acta, vol. 6, pp. 110–127, 1933.

[3] F. Zwicky, “On themasses of nebulae and of clusters of nebulae,”
The Astrophysical Journal, vol. 86, p. 217, 1937.

[4] V. C. Rubin and W. K. Ford, “Rotation of the andromeda
nebula from a spectroscopic survey of emission regions,” The
Astrophysical Journal, vol. 159, p. 379, 1970.

[5] V. C. Rubin, N. Thonnard, and W. K. Ford Jr., “Rotational
properties of 21 SC galaxies with a large range of luminosities
and radii, from NGC 4605/R = 4kpc/ to UGC 2885/R = 122
kpc/,” Astrophysical Journal, vol. 238, pp. 471–487, 1980.

[6] V. C. Rubin, D. Burstein, W. K. Ford Jr., and N. Thonnard,
“Rotation velocities of 16 SA galaxies and a comparison of Sa,
Sb, and SC rotation properties,” Astrophysical Journal, vol. 289,
p. 81, 1985.

[7] G. F. Smoot, C. L. Bennett, A. Kogut et al., “Structure in
the COBE differential microwave radiometer first-year maps,”
Astrophysical Journal, vol. 396, no. 1, pp. L1–L5, 1992.

[8] J. F. Navarro, C. S. Frenk, and S. D. M. White, “The structure of
cold dark matter halos,” Astrophysical Journal, vol. 462, article
563, 1996.

[9] E. F. Bunn and M. J. White, “The 4 year COBE normalization
and large-scale structure,” The Astrophysical Journal, vol. 480,
no. 1, p. 6, 1997.

[10] S. Perlmutter, S. Gabi, G. Goldhaber et al., “Measurements∗
of the cosmological parameters Ω and Λ from the first seven
supernovae at z ≥ 0.35,”The Astrophysical Journal, vol. 483, no.
2, p. 565, 1997.

[11] J. Retzlaff, S. Borgani, S. Gottlöber, A. Klypin, and V. Müller,
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[353] E. N. Saridakis, “Hořava–Lifshitz dark energy,” The European
Physical Journal C, vol. 67, no. 1-2, pp. 229–235, 2010.

[354] S.Mukohyama, “Darkmatter as integration constant inHořava-
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Hořava gravity,” Physical Review Letters, vol. 104, no. 18, Article
ID 181302, 4 pages, 2010.

[360] G. Leon and E. N. Saridakis, “Phase-space analysis of Hořava-
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[390] J. Klusoň, “Hamiltonian analysis of Lagrange multiplier mod-
ified gravity,” Classical and Quantum Gravity, vol. 28, no. 12,
Article ID 125025, 2011.

[391] L. Perko, Differential Equations and Dynamical Systems,
Springer, Heidelberg, Germany, 2006.

[392] J. Wainwright and G. F. R. Ellis, Eds., Dynamical Systems in
Cosmology, Cambridge University Press, Cambridge, UK, 1997.

[393] X. Chen, Y. Gong, and E. N. Saridakis, “Phase-space analysis
of interacting phantom cosmology,” Journal of Cosmology and
Astroparticle Physics, vol. 2009, 2009.

[394] C. Xu, E. N. Saridakis, and G. Leon, “Phase-space analysis of
teleparallel dark energy,” Journal of Cosmology and Astroparticle
Physics, vol. 2012, 2012.

[395] A. A. Starobinsky, “Disappearing cosmological constant in f(R)
gravity,” JETP Letters, vol. 86, no. 3, pp. 157–163, 2007.

[396] E. Elizalde, S. D. Odintsov, L. Sebastiani, and S. Zerbini, “Oscil-
lations of the F(R) dark energy in the accelerating universe,”The
European Physical Journal C, vol. 72, no. 2, 2012.

[397] K. Bamba, A. Lopez-Revelles, R. Myrzakulov, S. D. Odintsov,
and L. Sebastiani, “Cosmic history of viable exponential gravity:
equation of state oscillations and growth index from inflation to
dark energy era,” Classical and Quantum Gravity, vol. 30, no. 1,
Article ID 015008, 2013.

[398] V. K. Oikonomou, “An exponential F(R) dark energy model,”
General Relativity andGravitation, vol. 45, no. 12, pp. 2467–2481,
2013.

[399] V. Oikonomou, N. Karagiannakis, and M. Park, “Dark energy
and equation of state oscillations with collisional matter fluid in
exponential modified gravity,” Physical Review D, vol. 91, no. 6,
2015.

[400] J. L. Anderson and D. Finkelstein, “Cosmological constant and
fundamental length,” American Journal of Physics, vol. 39, no. 8,
pp. 901–904, 1971.

[401] A. Einstein,ThePrinciple of Relativity, Edited byA. Sommerfeld,
Dover, New York, NY, USA, 1952.
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[519] C. Barceló and M. Visser, “Scalar fields, energy conditions and
traversable wormholes,” Classical and Quantum Gravity, vol. 17,
no. 18, pp. 3843–3864, 2000.
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