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Abstract. In this paper, we examine teleparallel gravity with non-minimally coupled with
non-canonical fermionic fields (f -essence). Noether symmetry approach can be used to fix the
forms of coupling F (Ψ) and the potential V (Ψ) functions of the fermionic fields. In the context
of the Friedman-Robertson-Walker metric, we investigate cosmological solutions of the field
equations using these forms obtained by the existent of Noether symmetry.

1. Introduction
Astrophysical observational dates of recent years have shown that our Universe is expanding with
an accelerated phase [1,2]. Various cosmological scenarios have been proposed to explain this
interesting behavior. Many recent works admits the existence of a component of the Universe
the so-called dark energy which is the responsible for the present accelerated expansion of the
Universe, but whose nature still remains unknown. The cosmological constant was originally
the most natural candidate for dark energy, but other dark energy cosmological models have
also been proposed. The most common cosmological models, also called quintessence models,
make use of scalar fields and barotropic equations of state where the ratio between the energy
density and pressure assumes negative values. Other cosmological models consider is described
by exotic equations of state like the Chaplygin gas or the van der Waals fluid.

Einstein’s general relativity (GR) is well studied and tested in many works, alternative
theories of gravity continue to be of considerable interest. One kind of these alternative theories
of gravity assumes that the motion in the gravitational field is no longer geometrized, as in
GR, but is encoded in a dynamic gravitational force, as in teleparallel gravity [3,4]. Teleparallel
gravity may consider as a gauge theory for the translation group. As such, its fundamental field
is neither the metric nor the tetrad, but a gauge potential assuming values in the Lie algebra
of the translation group. This gauge character makes of teleparallel gravity theory, despite its
equivalence to GR, a rather peculiar theory.

One other possibility is to consider fermionic fields as gravitational sources for an expanding
universe [5,6]. These fermionic sources have been investigated by using several approaches,
including perturbations, anisotropy-to-isotropy scenarios, numerical and exact solutions, cyclic
cosmologies and dark spinors. In this case the fermionic field plays the role of the inflaton in
the early time of the Universe and of dark energy for the late time Universe, without the need
of a scalar field or a cosmological constant term.
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In the last years, the non-canonical scalar field called k-essence model has received much
attention, where it is still worth investigating in a systematic way the possible cosmological
behavior of the k-essence. Similarly to k-essence, a new model named as f -essence (non-canonical
fermion field) was proposed [7]. In the present work the connection between teleparallel gravity
and the f -essence is done via the tetrad formalism, where the components of the tetrad play
the role of the gravitational degrees of freedom. Also recently, a new model named as g-essence
was proposed in which is a more generalized version of k-essence and f -essence [8-11]. Note that
f-essence is the fermionic counterpart of k-essence.

One of the most popular methods of finding the exact cosmological solutions is to use the
Noether symmetry approach [12-15]. In addition, the existence of Noether symmetry leads to a
specific form of the unknown functions that appear in the Lagrangian. The method is used to
obtain cosmological models in several theory of gravity.

The structure of this paper is the following. In Sect. 2, the field equations are derived from
a point-like Lagrangian for Friedman-Robertson-Walker (FRW) spacetime, which is obtained
from an action including the fermionic field non-minimally coupled to the torsion scalar in
the framework of teleparallel gravity. In Sect. 3, we search for the Noether symmetry of the
Lagrangian of the theory and in Sect. 4, we obtain exact solutions of the field equations by
using the coupling function and potential obtaining Noether symmetry approach. Finally, in
the Sect. 5, we conclude with a brief summary of the obtained results. It should be noted that
we fully adopt the natural system of units by taking 8πG = c = h̄ = 1.

2. Action and field equations
Action for teleparallel gravity is non-minimally coupled with f -essence reads

S =

∫
d4xe {F (Ψ)T + 2K(Ψ, Y )} , (1)

where e = det(eaµ) =
√
−g, eaµ is a tetrad, T is a torsion scalar, and ψ and ψ̄ = ψ†γ0 denote the

spinor field and its adjoint, with the dagger representing complex conjugation. F (Ψ) and V (Ψ)
are generic functions, where Ψ = ψ̄ψ which representing the coupling and the self-interaction
potential of the fermionic field, respectively.

We will consider homogeneous and isotropic FRW metric which is given by

ds2 = dt2 − a2(t)[dx2 + dy2 + dz2], (2)

where a(t) is the scale factor of the universe.

The torsion scalar corresponding to the FRW metric (2) takes the form of T = −6ȧ2

a2
, where

the dot represents differentiation with respect to cosmic time t. Considering the background in
Eq.(2), it is possible to obtain the point-like Lagrangian from the action (1)

L = 6Faȧ2 − 2a3K, (3)

Equations of motion for f -essence part are obtained from the point-like Lagrangian (3)

KY ψ̇ + 0.5
(
3HKY + K̇Y

)
ψ − iγ0K ′ψ + 3iγ0H2F

′
ψ = 0, (4)

KY
˙̄ψ + 0.5

(
3HKY + K̇Y

)
+ iK

′
ψ̄γ0 − 3iH2F

′
ψ̄γ0 = 0, (5)

where H = ȧ/a denotes the Hubble parameter and the prime denotes a derivative with respect
to the bilinear Ψ. On the other hand, from the point-like Lagrangian (3) and by considering the
Dirac equations, we find first Friedmann equation

3H2 + 2Ḣ + 2H
Ḟ

F
+

1

F
pf = 0. (6)
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Also we can find second Friedmann equation as follows

3H2 −
ρ
f

F
= 0. (7)

In the first and second Friedmann equations, ρ
f

and p
f

are the effective energy density and
pressure of the fermion field, respectively, so that they have the following forms

ρ
f

= KY Y −K, (8)

p
f

= K. (9)

In expressions (4)-(9) is very hard to find solution since these are high order non-linear systems.
In order to solve the field equations we have to determine a form for the coupling function and
the potential density of the theory. To do this, in the following section we will use the Noether
symmetry approach.

3. The Noether symmetry approach
Symmetries of the Lagrangian, the so-called Noether symmetry, can be used to obtain
cosmological solutions. The Noether symmetry approach tells us that the Lie derivative of
the Lagrangian with respect to a given vector field X vanishes, i.e.

£XL = 0. (10)

If condition (10) satisfied, then X is said to be a symmetry for the dynamics derived from
the Lagrangian L and thus generates a conserved quantity. They determined the coupling and
potential density of the fermionic field and showed that the fermionic field behaves as an inflaton
describing an accelerated inflationary scenario. Now we will search for the Noether symmetries
for our model. In terms of the components of the spinor field ψ = (ψ1, ψ2, ψ3, ψ4)

T and its
adjoint ψ̄ = (ψ1

†, ψ2
†,−ψ3

†,−ψ4
†), the Lagrangian (3) can be rewritten as

L = 6Faȧ2 − 2a3K. (11)

Now we seek the condition for the Lagrangian (11) to admit a Noether symmetry. The existence
of Noether symmetry given by (10), which implies the existence of a vector field X such that

X = α
∂

∂a
+ α̇

∂

∂ȧ
+

4∑
j=1

βj ∂

∂ψj
+ β̇j

∂

∂ψ̇j
+ γj

∂

∂ψ†j
+ γ̇j

∂

∂
˙
ψ†j

 , (12)

where α, βj and γj are unknown functions of the variables a, ψj and ψ†j . Hence the Noether
condition (10) leads to the following differential equations consisting of the coupled system of
equations

α+ 2a
∂α

∂a
+
F ′

F
a

4∑
i=1

(
εiβiψ

†
i + εiγiψi

)
= 0, (13)

12Fa
∂α

∂ψj
= 0, 12Fa

∂α

∂ψ†j
= 0, (14)

3αψj + aβj − a
4∑
i=1

 ∂βi

∂ψ†j
ψ†i −

∂γi

∂ψ†j
ψi

 = 0, (15)
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3αψ†j + aγj + a
4∑
i=1

(
∂βi
∂ψj

ψ†i −
∂γi
∂ψj

ψi

)
= 0, (16)

4∑
i=1

(
∂βi
∂a

ψ†i −
∂γi
∂a

ψi

)
= 0, (17)

3α (K −KY Y ) + aK ′
4∑
i=1

(
εiβiψ

†
i + εiγiψi

)
= 0, (18)

where εi =

{
1 for i = 1, 2
−1 for i = 3, 4

. This system given by Eqs.(13)-(18), is obtained by imposing

the fact that the coefficients of ȧ2, ȧ, ψ̇j ,
˙
ψ†j , ȧψ̇j and ȧ

˙
ψ†j vanish.

One can see from Eq.(14) that the coefficient α is a function only depends on a. From the
Eq.(18) one can rewrite as follows:

3α (K −KY Y )

aK ′
= −

4∑
i=1

(
εiβiψ

†
i + εiγiψi

)
. (19)

We put (19) into (13) and, recalling that F and V are only functions of Ψ, the corresponding
result is

α

a

∂α

∂a
=

3F ′ (K −KY Y )

2FK ′
− 1

2
= n, (20)

where n is a constant. Then, we find α from (20)

α = α0a
n, (21)

where α0 is an integration constant. Now, from (15), (16) and (21), after some algebraic
calculations, one can obtain the solutions for the other symmetry generators βj and γj as follows:

βj = −(
3

2
α0a

n−1 + εjβ0)ψj ,

γj = −(
3

2
α0a

n−1 − εjβ0)ψ†j , (22)

where β0 is a constant of integration. Using the above solution in (20), the coupling function
F (Ψ) is obtained

K − Y KY

K ′
=

(
2n+ 1

3

)
F

F ′
= Ψ, (23)

Ψ
dF

dΨ
−
(

2n+ 1

3

)
F = 0; (24)

F (Ψ) = C1Ψ
2n+1

3 , (25)

where C1 is an integrable constant.
Substituting these values into equation (20) and using the α given in (25), we have the

following equation

Y
∂K

∂Y
+ Ψ

∂K

∂Ψ
−K = 0, (26)
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To solve this equation we need to make the change of variables

Y,Ψ→ p = Y − νΨ,
∂

∂Y
=

∂

∂p
,
∂

∂Ψ
= −ν ∂

∂p
. (27)

where ν is a constant. Then the partial differential equation (26) is transformed into an ordinary
differential equation

K − pdK
dp

= 0, (28)

Then, we find K as
K (Ψ, Y ) = µY − νΨ, (29)

where µ, ν are some integral constants. For our model we have V = νΨ,

4. Exact cosmological solutions
In this section, we attempt to integrate the dynamical system given by (4)-(5) analytically.
Since the coupling and potential functions depend on the bilinear function Ψ, using the Dirac
equations (4) and (5) one gets

Ψ̇ + 3
ȧ

a
Ψ = 0, (30)

and integration gives

Ψ =
Ψ0

a3
, (31)

where Ψ0 is a constant of integration. We note that, since the field equations can be directly
integrable, it is not necessary to calculate the constants of motion associated with the Noether
symmetry. Also the constants of motion give no new constraint on the field equations. From the
above solution, the first and second Friedmann equations become only a function of the cosmic
scale factor

ȧ =
ν

1
2 Ψ

1
3
(1−n)

0√
3C1

an. (32)

or
ȧ = a0a

n. (33)

where a0 is a constant

a0 =
ν

1
2 Ψ

1
3
(1−n)

0√
3C1

. (34)

If we solve this equation, we have solution

a(t) = [a0 (1− n) t+ C1]
− 1

n−1 , (35)

where C1 is integral constant.
The Hubble parameter can be written as

H =
a0

a0 (1− n) t+ C1
. (36)

Defining the energy density and pressure

ρ =
3a0

[(1− n) t+ C1]
2 , (37)
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p = − (2n+ 1) a20
[(1− n) t+ C1]

2 . (38)

The equation of state ω be written as

ω = −1

3
(2n+ 1) , (39)

And the deceleration parameter q is defined by:

q =
1

2
(1 + 3ω) = −n (40)

Cosmological observations denote that w lies in a very narrow strip close to w = −1. The
case w = −1 corresponds to the cosmological constant. For w < −1, the phantom phase is
observed, and for −1 < w < −1/3 the phase is described by quintessence. Thus, in the interval
0 < n < 1, we have the quintessence phase. If n > 1, then the phantom phase occurs, where
the universe is both expanding and accelerating. Therefore, we conclude that the fermionic field
behaves as both the quintessence and phantom dark energy.

5. Conclusions
In the present work, we have investigated the f -essence dark energy models, where the
gravitational part of the Lagrangian is considered teleparallel gravity. We know that Noether
symmetry a very important tool, because it guarantees the conservation laws and restricts
the possible expressions for the coupling function and for the potential of fermion field in the
framework of teleparallel gravity. In our case, this symmetry yields cosmological solutions that
describe not only the early-time but also late-time accelerated expansion.
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