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Department of General and Theoretical Physics, L. N. Gumilyov Eurasian National University,
Nur-Sultan, 010008, Kazakhstan

E-mail: g.shaikhova@gmail.com

Abstract. In this paper, the differential-q-difference 2D Toda lattice is studied. Hirota’s
bilinear technique is applied to it. Soliton solutions are constructed through the resulting
bilinear form for the differential-q-difference 2D Toda equation.

1. Introduction
During the last decades seeking exact solutions of nonlinear evolution equations have flourished
into a research area of great importance and interest [1-8]. Among the methods of finding the
solutions of soliton equations such as the inverse scattering (spectral) transform method [9],
the Backlund and Darboux transformation technique [10-15], etc., the bilinear transformation
method of Hirota is the most effective technique and has been widely used for many soliton
equations, see [16-17].

Discrete integrable system has been getting a lot of attention from the viewpoints of difference
scheme and algorithm. For example, the Toda lattice equation was derived by Toda as a model
of one-dimensional chain of masses connected by springs with nonlinear interaction force [18-19].
The Toda lattice is one of the completely integrable systems with multi-soliton solutions. The
equation of motion of the Toda lattice is

q̈n = eqn−1−qn − eqn−qn+1 , (1)

where qn is the position of the n-th particle. The time-discretization of the Toda lattice was
obtained by Hirota [20] as a bilinear form. The two-dimensional Toda lattice equation was
introduced in works [21-24].

In recent years a great of attention has been paid to the quantum group. Some kinds of q-
special functions naturally appear in the representation theory of the quantum groups. Jackson
proposed various q-special functions and introduced the notion of the q-difference equation and
q-integration as analogue of the ordinary differential equation [25]. The q-difference version
of the cylindrical Toda lattice equation is studied in [26]. A general framework for integrable
discrete systems on R, in particular, containing lattice soliton systems and their q-deformed
analogs are presented in [27]. Basis of solutions of the scalar equation describing the spectrum
of the q-Toda chain by using auxiliary non-linear integral equations are constructed in [28]. In
[29] authors are constructed the Sato theory including the Hirota bilinear equations and tau
function of a new q-deformed Toda hierarchy.
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The purpose of this paper is to study the differential-q-difference 2D Toda equation by using
Hirota’s method [30-31]. We apply the main idea of work [32] and obtain the differential-q-
difference 2D Toda equation [33]. The one-q-soliton solution is found by us in [33]. In this
paper, we find two-soliton and three-soliton solutions of the differential-q-difference 2D Toda
lattice.

2. The differential-q-difference 2D Toda lattice
2.1. Bilinear forms
The differential-q-difference 2D Toda lattice is proposed [33] as follows:

d2

dxdt
ln (1 + V (x, y, t)) = V (x, qy, t) + V

(
x,
y

q
, t

)
− 2V (x, y, t). (2)

Let us introduce the dependent variable transformation as

V (x, y, t) =
d2

dxdt
ln f(x, y, t). (3)

By substituting (3) in (2) we can get

d2

dxdt
ln

(
1 +

d2

dxdt
ln f (x, y, t)

)
=

d2

dxdt

(
ln f (x, qy, t) + ln f

(
x,
y

q
, t

)
− 2 ln f (x, y, t)

)
. (4)

We integrate equation (4) by x and t, and then we obtain

ln

(
1 +

d2

dxdt
ln f(x, y, t)

)
= ln f(x, qy, t) + ln f

(
x,
y

q
, t

)
− 2 ln f(x, y, t). (5)

By simplification equation (5) we can get

fxtf − fxft = f(x, qy, t)f(x,
y

q
, t) − f2. (6)

Left part of equation (6) can be rewriten by property of Hirota’s operator. It is mean

fxtf − fxft =
1

2
2 (fxtf − fxft) =

1

2
DxDt (f · f) . (7)

Right part of equation (6) we can rewrite in Hirota operator as

f(x, qy, t)f

(
x,
y

q
, t

)
− f2 =

[
1

2

(
ehyDy + e−hyDy

)
− 1

]
(f · f) . (8)

With Hirota form (7) and (8) we have bilinear form for the differential-q-difference 2D Toda
lattice as [

DxDt −
(
ehyDy + e−hyDy − 2

)]
(f(x, y, t) · f(x, y, t)) = 0. (9)
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2.2. Soliton solutions
In order to obtain multy soliton solutions, we make to use of finite perturbation expansion
around a formal perturbation parameter ε as

f(x, y, t) = 1 + εf1(x, y, t) + ε2f2(x, y, t) + ε3f3(x, y, t) + ... (10)

Substituting (10) in (9) we have

P [D] (f(x, y, t) · f(x, y, t)) = P (D)[1 · 1 + ε(1 · f1 + f1 · 1)+

+ε2(1 · f2 + f2 · 1 + f1 · f1) + ε3(1 · f3 + f3 · 1 + f1 · f2 + f2 · f1)+ (11)

+ε4(1 · f4 + f4 · 1 + 1 · f3 + f3 · 1 + f2 · f2) + . . . ],

where P [D] ≡ DxDt −
(
ehyDy + e−hyDy − 2

)
- polynomial of operator D. We rewrite equation

(11) by collecting some powers of ε

ε0 : P [D](1 · 1) = 0, (12)

ε1 : P [D](1 · f1 + f1 · 1) = 0, (13)

ε2 : P [D](1 · f2 + f2 · 1 + f1 · f1) = 0, (14)

ε3 : P [D](1 · f3 + f3 · f1 · f2 + f2 · f1) = 0, (15)

ε4 : P [D](1 · f4 + f4 · f1 · f3 + f3 · f1 + f2 · f2) = 0, (16)

. . .

We can obtain multy soliton solutions by solving the system of equations (12)-(16).

2.2.1. One-q-soliton solutions. In order to obtain one-q-soliton solution we take (10) as

f(x, y, t) = 1 + f1(x, y, t). (17)

Then system (12)-(16) can be rewritten in next form

ε1 : P [D](1 · f1 + f1 · 1) = 0, (18)

ε2 : P [D](1 · f2 + f2 · 1 + f1 · f1) = 0. (19)

In order to solve equations (18)-(19) we take

f1(x, y, t) = yαeβt+γx+η, (20)

where α, γ are arbitrary constant. Substituting (20) in (18)-(19) we can get next relation

β =
1

γ
(qα + q−α − 2), (21)

which is dispersion relation. Thus, by substituting (20) in (17) and then in (3) one-q-soliton
solution can obtained in the next form [33]

V (x, y, t) =
yαβγeαt+βx+η

(1 + yαeαt+βx+η)
2 . (22)
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2.2.2. Two-q-soliton solutions. Two-q-soliton solution can be constructed by taking (10) as

f(x, y, t) = 1 + f1(x, y, t) + f2(x, y, t). (23)

Then system (12)-(16) takes next form

ε1 : P [D](1 · f1 + f1 · 1) = 0, (24)

ε2 : P [D](1 · f2 + f2 · 1 + f1 · f1) = 0, (25)

ε3 : P [D](1 · f3 + f3 · f1 · f2 + f2 · f1) = 0. (26)

Let’s solve system (24)-(26). By taking starting solution as

f1(x, y, t) = yα1eβ1t+γ1x+η1 + yα2eβ2t+γ2x+η2 , (27)

and substituting (27) in (24)-(26) and then obtained expressions in (3) we can get the two-q-
soliton solution in following form

V (x, y, t) =
d2

dxdt
ln(1 + f1 + f2), (28)

where

f1(x, y, t) = yα1eβ1t+γ1x+η1 + yα2eβ2t+γ2x+η2 , (29)

f2 (x, y, t) = A12y
α1+α2e(β1+β2)t+(γ1+γ2)x+(η1+η2), (30)

with

A12 = − (β1 − β2)(γ1 − γ2) − (qα1−α2 + qα2−α1 − 2)

(β1 + β2)(γ1 + γ2) − (qα1+α2 + q−α1−α2 − 2)
, (31)

β1 =
1

γ1
(qα1 + q−α1 − 2) and β2 =

1

γ2
(qα2 + q−α2 − 2). (32)

2.2.3. Three-q-soliton solutions. According to Hirota method in this case we take

f = 1 + εf1 + ε2f2 + ε3f3. (33)

Then system (12)-(16) takes form

ε1 : P [D](1 · f1 + f1 · 1) = 0, (34)

ε2 : P [D](1 · f2 + f2 · 1 + f1 · f1) = 0, (35)

ε3 : P [D](1 · f3 + f3 · f1 · f2 + f2 · f1) = 0, (36)

ε4 : P [D](1 · f4 + f4 · f1 · f3 + f3 · f1 + f2 · f2) = 0. (37)

In order to solve system (34)-(37) we take starting solution as

f1 = yα1eβ1t+γ1x+η1 + yα2eβ2t+γ2x+η2 + yα3eβ3t+γ3x+η3 . (38)
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By substituting (38) into system of equation (34)-(37) and doing some calculation we can obtain
three-q-soliton solutions in next form

V (x, y, t) =
d2

dxdt
ln(1 + f1 + f2 + f3), (39)

where

f1 = yα1eβ1t+γ1x+η1 + yα2eβ2t+γ2x+η2 + yα3eβ3t+γ3x+η3 ,

f2 = A12e
(β1+β2)t+(γ1+γ2)x+(η1+η2)yα1+α2 +

+A13e
(β1+β3)t+(γ1+γ3)x+(η1+η3)yα1+α3 +

+A23e
(β2+β3)t+(γ2+γ3)x+(η2+η3)yα2+α3 ,

f3 = A123y
α1+α2+α3e(β1+β2+β3)t+(γ1+γ2+γ3)x+(η1+η2+η3),

with

A12 =
(β1 − β2)(γ1 − γ2) − (qα1−α2 + qα2−α1 − 2)

(β1 + β2)(γ1 + γ2) − (qα1+α2 + q−α1−α2 − 2)
,

A13 =
(β1 − β3)(γ1 − γ3) − (qα1−α3 + qα3−α1 − 2)

(β1 + β3)(γ1 + γ3) − (qα1+α3 + q−α1−α3 − 2)
,

A23 =
(β2 − β3)(γ2 − γ3) − (qα2−α3 + qα3−α2 − 2)

(β2 + β3)(γ2 + γ3) − (qα2+α3 + q−α2−α3 − 2)
,

A123 = A12A13A23,

and dispersion relations

β1 =
1

γ1
(qα1 + q−α1 − 2), β2 =

1

γ2
(qα2 + q−α2 − 2), β3 =

1

γ3
(qα3 + q−α3 − 2).

3. Conclusion
In summary, we obtain one-q-soliton solution, two-q-soliton solution, three-q-soliton solution of
the differential-q-difference 2D Toda lattice via the Hirota method. Using the proposed Hirota
method one can obtain other kind wave solutions of nonlinear differential-difference equations.
We hope that obtained results will be useful in the further perturbative and numerical analysis
of various solutions Toda lattice. Additional applications of this method to other nonlinear
differential-difference systems deserve further investigation.
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