ҚАЗАҚСТАН РЕСПУБЛИКАСЫНЫҢ БІЛІМ ЖӘНЕ ҒЫЛЫМ МИНИСТРЛІГІ

Л.Н. ГУМИЛЕВ АТЫНДАҒЫ ЕУРАЗИЯ ҰЛТТЫҚ УНИВЕРСИТЕТІ КӨЛІК – ЭНЕРГЕТИКА ФАКУЛЬТЕТІ

«КӨЛІК ЖӘНЕ ЭНЕРГЕТИКАНЫҢ ӨЗЕКТІ МӘСЕЛЕЛЕРІ: ИННОВАЦИЯЛЫҚ ШЕШУ ТӘСІЛДЕРІ» Х ХАЛЫҚАРАЛЫҚ ҒЫЛЫМИ-ТӘЖІРИБЕЛІК КОНФЕРЕНЦИЯСЫНЫҢ БАЯНДАМАЛАР ЖИНАҒЫ

СБОРНИК МАТЕРИАЛОВ Х МЕЖДУНАРОДНОЙ НАУЧНО – ПРАКТИЧЕСКОЙ КОНФЕРЕНЦИИ: «АКТУАЛЬНЫЕ ПРОБЛЕМЫ ТРАНСПОРТА И ЭНЕРГЕТИКИ: ПУТИ ИХ ИННОВАЦИОННОГО РЕШЕНИЯ»

PROCEEDINGS OF THE X INTERNATIONAL SCIENTIFIC-PRACTICE CONFERENCE «ACTUAL PROBLEMS OF TRANSPORT AND ENERGY: THE WAYS OF ITS INNOVATIVE SOLUTIONS»

Редакционная коллегия:

Председатель — Мерзадинова Г.Т., Член Правления — Проректор по науке, коммерциализации и интернационализации ЕНУ им. Л.Н. Гумилева, д.т.н., профессор; Заместитель председателя — Султанов Т.Т., заместитель декана по научной работе, к.т.н., доцент; Сулейменов Т.Б. — декан транспортно-энергетического факультета ЕНУ им. Л.Н.Гумилева, д.т.н., профессор; Председатель «Әдеп» — Ахмедьянов А.У., к.т.н., доцент; Арпабеков М.И. — заведующий кафедрой «Организация перевозок, движения и эксплуатация транспорта», д.т.н. профессор; Тогизбаева Б.Б. — заведующий кафедрой «Транспорт, транспортная техника и технологии», д.т.н. профессор; Байхожаева Б.У. — заведующий кафедрой «Стандартизация, сертификация и метрология», д.т.н. профессор; Жакишев Б.А.—заведующий кафедрой «Теплоэнергетика», к.т.н., доцент.

А43 Актуальные проблемы транспорта и энергетики: пути их инновационного решения: X Международная научно — практическая конференция, Нур-Султан, 17 марта 2022 /Подгот. Г.Т. Мерзадинова, Т.Б. Сулейменов, Т.Т. Султанов — Нур-Султан, 2022. — 597с.

ISBN 978-601-337-661-5

В сборник включены материалы X Международной научно — практической конференции на тему: «Актуальные проблемы транспорта и энергетики: пути их инновационного решения», проходившей в г. Нур-Султан 17 марта 2022 года.

Тематика статей и докладов участников конференции посвящена актуальным вопросам организации перевозок, движения и эксплуатации транспорта, стандартизации, метрологии и сертификации, транспорту, транспортной техники и технологии, теплоэнергетики и электроэнергетики.

Материалы конференции дают отражение научной деятельности ведущих ученых дальнего, ближнего зарубежья, Республики Казахстан и могут быть полезными для докторантов, магистрантов и студентов.

ОЦЕНКА ОБЩИХ УСЛОВИЙ ИЗМЕНЕНИЯ АВАРИЙНОСТИ В ГОРОДЕ НУР-СУЛТАН

Сұлтан Әліхан Әмірұлы

alichless@gmail.com

Магистрант 2 курса Транспортно-энергетического факультета специальности «Транспорт, транспортная техника и технологии» ЕНУ имени Л.Н. Гумилева, г. Нур-Султан

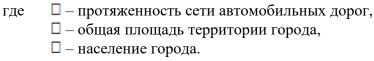
Каражанов Абдикарим Алмаханович

karazhanov aa@enu.kz

Кандидат технических наук, доцент кафедры «Транспорт, транспортная техника и технологии» ЕНУ имени Л.Н. Гумилева, г. Нур-Султан

На сегодняшний день по опыту других стран мы знаем, что автомобилизация наравне с бесспорно позитивным воздействием на социальное развитие и экономического состояния государств заключает в себе также и негативные последствия, которые связаны со значительным количеством дорожно-транспортных происшествий (ДТП).

Дорожно-транспортные происшествия порождают существенный ущерб на социальноэкономическое состояние, влияет глобально на самочувствие и жизни людей. За последние несколько лет урон от ДТП в общей сложности превосходит ущерб от всех других транспортных происшествий (поездов, кораблей, самолетов и т. п.). Дорожно-транспортные происшествия относятся к одной из серьезнейших опасностей, которые воздействуют на состояние здоровья и жизни людей. Вопрос обостряется и тем, что зачастую получают значимые ранения в происшествиях здоровые и молодые люди.


Оценка изменения общих условий аварийности позволит определить характер взаимосвязи между показателями транспортной производительности на улично-дорожную сеть города Нур-Султан и уровнем аварийности. Эта оценка производится путем проведения анализа взаимодействия между показателями транспортной производительности на дорожной линии и величиной аварийности в дорожном движении, в том числе и путем оценки общего воздействия мероприятий по обеспечению безопасности дорожного движения на колебания аварийности.

 $T_{\alpha} \delta_{\pi} m_{\alpha} = 1 - M_{CY} \delta_{\sigma} \delta_{\sigma} \alpha_{\sigma} m_{\sigma} \delta_{\sigma} \delta_{\sigma} \alpha_{\sigma} m_{\sigma} \delta_{\sigma} \delta_{$

<u> 1 иолица 1 — Исхооная информация</u>	•	•	
Наименование расчетных показателей и исходной	2018 г	2019 г	2020 г
информации			
Парк индивидуальных ТС, (тыс. ед.)	261,1	270,7	273,1
Население, (тыс. чел)	1 054,4	1 078,3	1 160,2
Насыщенность индивидуальными ТС, (ед./тыс. чел)	247,62	251,04	235,39
Общая площадь территории города, района, квартала	769	772	785
(κM^2)			
Протяженность линий автомобильных дорог, (км)	849,5	853,7	868,3
Удельная плотность сети автомобильных дорог,	1,104	1,105	1,106
$(\kappa M/\kappa M^2)$			
Количество ДТП (А), (ед)	527	563	466
Количество погибших при - ДТП (Ас), (чел.)	34	36	31

На основе имеющихся данных мы для каждого года производим расчет значения коэффициента обеспеченности территории города дорогами по следующей формуле: $\square_o = \frac{\square}{\sqrt{\square \cdot \square}}\,,$

$$\Box_o = \frac{\Box}{\sqrt{\Box \cdot \Box}},$$

Для каждого города приводят расчеты значения относительного показателя степени тяжести ДТП, как соотношение численности погибших при ДТП к общей численности ДТП. Данный расчетный показатель находим с помощью формулы:

$$\Box = \frac{\Box_c}{A},$$

Где

□ – показатель степени тяжести ДТП,

 \Box_{c} — численность погибших в ДТП, человек,

A — общее число ДТП за год.

Далее заполняем графы в таблице ниже.

Таблица 2 – Расчетные показатели

	•		1
Наименование исходной информации и расчетных	2018 г	2019 г	2020 г
показателей			
	273 372,5	277 399,2	260 341,3
$\left(\frac{\epsilon\delta}{m_{\text{MGC}}\cdot \kappa_{\text{M}}^2}\cdot 10^3\right)$			
Коэффициент обеспеченности города	0,029	0,029	0,028
автомобильными дорогами			
Показатель тяжести ДТП (Т)	0,065	0,064	0,067

Затем производим сопоставление характера трансформаций значений индекса условной транспортной производительности с характером изменения числа ДТП. В процессе сопоставления производится оценка наличия или отсутствия сходств тенденций изменения анализируемых показателей.

В нашем случае наблюдается факт частичного сходства тенденций изменения указанных показателей. Он характеризует условие, когда в следствии развития автотранспортного комплекса потенциалы сети по сервису дорожного движения снижаются к минимуму. Данный условный запас потенциалов имеет вероятность быть достаточно быстро исчерпанным.

Далее для каждого года на основе информации о числе ДТП вычисляется значение показателя трансформации численности происшествий в последующем за ним году в отношении к предыдущему (Π_A). При этом знак (+) или (-) указывает, соответственно, на тенденции повышения или понижения полученного значения показателя. Расчет производим по формуле:

$$\Pi_A = \frac{A_2 - A_1}{A_1} \,,$$

где

 A_1 – число ДТП в предыдущем году,

 A_2 — число ДТП в следующем году.

Для каждого рассматриваемого года производится расчет среднего значения показателя изменения числа ДТП ($3_{\Pi A}$) за период трех лет с целью увеличения верности оценки изменения значения данного показателя на оси временного промежутка трехлетние промежутки обязаны перекрывать друг друга, с первых 3-х лет проведения анализа до нынешнего года. Расчет произведем по формуле ниже:

$$3_{\Pi A} = \frac{\Pi_{A1} + \Pi_{A2} + \Pi_{A3}}{3}$$
,

где Π_{A1} , Π_{A2} , Π_{A3} — соответственно значения показателей для 1,2 и 3 годов.

Для каждого анализируемого года с применением значений показателя степени тяжести ДТП производится расчет значения показателя изменения степени тяжести ДТП в последующем году в отношении к предыдущему (Π_T). При этом знак (+) или (-) указывает,

соответственно, на тенденции повышения или понижения полученного значения показателя. Расчет производим по формуле:

$$\Pi_T = \frac{T_2 - T_1}{T_1} \,,$$

где T_1 , T_2 — соответственно значения показателя изменения степени тяжести ДТП за 1 и 2 год анализируемого периода.

Таблица 3 - Показатели

Наименование расчетных показателей и исходной	2018 г	2019 г	2020 г
информации			
Показатель изменения числа ДТП в отношении	-0,096	0,068	-0,172
предыдущего года (ПА)			
Среднее значение изменения показателя Π_A за	-0,2		
предыдущие 3 года (ЗПА)			
Показатель изменения степени тяжести ДТП в	-0,389	-0,015	0,046
отношении предыдущего года (П _Т)			
Среднее значение изменения показателя Π_T за	-0,358		
предыдущие 3 года (ЗПТ)			

Далее осуществляется общая оценка характера и тенденций стабильности и изменения усредненных значений показателей числа происшествий их степени тяжести, при оценке этих данных учитывается следующее:

- рост или снижение характера любого из средних значений за период трех лет;
- формирующаяся единая тенденция совокупного изменения средних значений данных показателей за весь анализируемый временного периода.

При проведении оценки любого из средних значений данных показателей изменения числа ДТП и их степени тяжести нужно учитывать:

- положительное или отрицательное значение данных показателя подтверждает то, что за рассматриваемый период времени характерным было ухудшение или улучшение как по численности, так и по степени тяжести происшествий в соответствии рассматриваемого показателя;
- характер повышения и понижения средних значений данного показателя изменения числа ДТП считается отражением общей результативности мероприятий, проводимых по предотвращению ДТП в городе Нур-Султан (обеспечение активной безопасности дорожного движения);
- характер повышения и понижения средних значений данного показателя изменения степени тяжести происшествий напрямую связан с результатами мероприятий по понижению уровня ущерба, который возникает при ДТП, в особенности для наиболее общественно опасного вида смерти людей (обеспечение пассивной безопасности дорожного движения).

Таблица 4 – Тенденция изменения результативности

Наименование исходной информации и расчетных показателей	2018 г	2019 г	2020 г
Тенденция изменения результативности АБД	снижение	рост	снижение
Тенденция изменения результативности ПБД	снижение	снижение	рост

Вывод. При оценке общих условий изменения аварийности в городе Нур-Султан за 2018-2020 гг. была выявлена тенденция изменения результативности пассивной безопасности дорожного движения, так же имеется резкий рост результативности пассивной безопасности. Что показывает влияние проводимых мероприятий по повышению безопасности в городе.

Список использованных источников

- 1. Клинковштейн Г.И., Афанасьев М.Б. Организация дорожного движения: Учебник для вузов, 5-е изд. перераб. и доп. М.: Транспорт, 2001. 247 с.
- 2. Рекомендации, по оценке эффективности дорожно-ремонтных работ. М.: Транспорт, 1991 -24 с.
- 3. Кременец Ю.А. Технические средства организации дорожного движения: Учебник для вузов М.: Транспорт, 1990. -255 с.

ПРЕДЛОЖЕНИЯ ПО ПОВЫШЕНИЮ СИСТЕМ БЕЗОПАСНОСТИ ТРАНСПОРТНЫХ СРЕДСТВ

Тулеуов Алмас Кайратулы

tk_almas@mail.ru

Магистрант второго курса специальности 7M07113 — Транспорт, транспортная техника и технологии транспортно-энергетического факультета ЕНУ им. Л.Н. Гумилева

Транспорт одна из важнейших отраслей народного хозяйства, которая обеспечивает население и грузы различного назначения в перевозке из одного места в другое. Высокая потребность в автомобильных перевозках сохраняется и вызвана ежегодным увеличением грузов и пассажирооборота, несмотря на мировой финансово-экономический кризис, который затронул экономику нашей страны. Однако, процесс автомобилизации страны сопутствует большую потерю трудовых и материальных ресурсов, созданные высоким уровнем дорожнотранспортной аварийности, которые сдерживают социально-экономическое развитие Казахстана.

По источникам мировой статистики основные причины дорожно-транспортных происшествий (ДТП): сложные дорожные условия, несоответствующие требованиям безопасности дороги, неправильные действия водителей и технические неисправности агрегатов и узлов транспортных средств. При этом, в Казахстане около 10 % всех случаев ДТП происходят вследствие того, что эксплуатации транспортных средств осуществляется с неисправностями систем, влияющие на их активную и пассивную систему безопасности.

Большую роль в обеспечении безопасности дорожного движения играет безопасность транспортных средств. Требования к уровню конструктивной и эксплуатационной безопасности транспортных средств постоянно повышаются. Можно с уверенностью сказать, что многие жизни пострадавших при ДТП можно было бы спасти при обеспечении более высокого уровня активной, пассивной и послеаварийной безопасности конструкций автомобилей.

Автомобильная промышленность выпускает транспортные средства, в основном отвечающие современным требованиям, однако условия эксплуатации настолько сложны и разнообразны, что нельзя установить предел совершенства конструкции, которую можно было бы признать эталоном по всем параметрам. Особенно это справедливо по отношению к безопасности автомобиля, который представляет собой потенциальный источник повышенной опасности для людей. Эта опасность чрезвычайно возросла на сегодняшний день, когда вследствие безудержного роста мощности двигателя и скоростей движения автомобилей, безопасность движения превратилась в социальную проблему первостепенной важности.

Перед началом производства автотранспортного средства предприятие-изготовитель должно получить сертификат, который является одним из основных документов при первичной регистрации каждого автомобиля.

При производстве автотранспортного средства контроль осуществляется за счёт функционирования на заводе-изготовителе системы качества и проведения представителями органа по сертификации регулярных инспекций уровня обеспечения качества выпускаемой сертифицированной продукции на заводе.

Конструктивная безопасность автомобиля является сложным свойством. Учитывая