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Solid oxide fuel cells (SOFCs) are efficient electrochemical energy device that converts the chemical energy of
fuels directly into electricity. It has a high power and energy density and a sustainable source of energy. The
electrode (cathode and anode) materials are essential for the efficient operation of SOFCs. Several electrode

SHStafnab_lhty . materials have been studied in the last two decades, mainly perovskite materials. The investigated materials have
Polarization resistance . . . . . . o1s
o, resulted in improved electrochemical performance of SOFCs, increased commercial viability, and reduced

operational costs. However, the sustainability of most of the material compositions (heteroatoms) used as
electrodes in SOFCs has never been investigated. The present study examines the recent progress, challenges, and
constraints associated with electrode material development in SOFCs from a sustainable perspective. Hetero-
atoms majorly employed for doping in electrode materials’ long-term availability on the earth’s surface was
established. The study also provides an overview on the current state of electrode materials development for
symmetrical solid oxide fuel cells. This is intended to address the complexities of different materials development
for the anode and cathode.

1. Introduction wind turbines, and fuel cells [3-5]. Most of these technologies are

limited by environmental constraints, such as overcast days, intermit-

Overreliance on fossil fuels as the primary source of energy poses a
significant challenge to the environment. This form of energy is unsus-
tainable in the long term and has adverse effects on the climate,
resulting in the depletion of ozone layers. Among the drawbacks asso-
ciated with fossil fuels are CO, emissions, greenhouse gas effects, the
release of nitrogen oxides, and particulates. Energy experts are of the
view that there is a need for increased use of sustainable energy-
generating technologies [1,2], as it will increase the amount of clean
energy available to the global community. Currently, there are several
clean energy technologies, including sunlight energy harvesting devices
(solar collectors and photovoltaic collectors), biomass, hydrothermal,

tency, and low energy conversion rates. However, fuel cell has proven to
have high energy conversion rates (around 60 %), less environmental
dependence, and cost-effective compared to other sustainable energy-
generating devices. Without the requirement for direct combustion as
an intermediate step, fuel cells electrochemically convert chemical en-
ergy into electrical energy and heat, resulting in higher conversion ef-
ficiency than those of conventional clean energy technologies. The
absence of the combustion chamber in fuel cells makes it eco-
environmental friendliness [6,7]. Various types of fuel cell technolo-
gies exist, including polymer electrolyte membrane fuel cell (PEMFC),
solid oxide fuel cell (SOFC), direct methanol fuel cell (DMFC), alkaline
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fuel cell (AFC), phosphoric acid fuel cells (PAFC), and molten carbonate
fuel cell (MCFC). However, SOFC have shown excellent properties due to
its durability and flexibility with fuels, high energy and power densities
compared to other electrochemical energy conversion devices.

The three main components of the SOFC are the cathode, electrolyte,
and anode. Anode (negative electrode) in fuel cells is responsible for
oxidizing hydrogen, releasing electrons and producing protons. The
protons then travel via an electrolyte to the cathode (positive electrode),
where they combine with oxygen to produce water, releasing more
electrons in the process. Electrical current is produced as the electrons
flow through an external circuit. Accelerating the oxidation and reduc-
tion reactions taking place at the electrodes with electrocatalyst mate-
rials such as platinum and other transition metals, ensures the effective
conversion of chemical energy to electrical energy [8-10]. However,
platinum catalysts are expensive and their electrocatalytic properties
tend to decrease after prolonged use in SOFC. This can be attributed to
the high operating temperatures of traditional SOFC. Fig. 1 provides an
overview of the conventional SOFC and its various components.

The performance and durability of SOFCs is mainly influenced by the
selection and optimization of electrode materials. Advancements in
electrode materials development have been a major focal point for the
past few decades. The present study aims to examine the recent progress
in electrode material development for SOFC from a sustainable
perspective, while highlighting its limitations. Electrode materials
development for symmetrical solid oxide fuel cell were also investigated.
Various materials employed in electrode synthesis were analysed,
including perovskites, composites, cermet materials, and mixed ionic-
electronic conductors. This group of materials was mainly analysed
due to their high conductivity, stability at high temperatures, and
compatibility with oxygen reduction and fuel oxidation reactions.
Although several review studies have been published in the past decade,
none was devoted to the sustainability of electrode materials develop-
ment in SOFC, particularly the long-term availability of heteroatoms. In
order to provide an overview of recent advancements in the application
of electrode materials in SOFCs, a brief literature review was conducted.
To gather relevant literature, three bibliographic databases (Science-
Direct, Web of Science, and Google Scholar) were searched using key-
words such as “fuel cell,” “solid oxide fuel cells,” and “electrode
materials”. Fig. 2 provides an overview of how the literature was
sourced. Similar techniques have been adopted by other researchers in
their review studies [11-13].

Most previous related review studies focused on new materials
development, optimizations, and future research trends [14-23]. The
availability of the heteroatoms used in electrode materials doping, and
it’s sustainability on the long term has never been investigated. The
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review study by Bello et al. [24] on proton conducting SOFC (P-SOFC)
provide valuable insight on its effectiveness compared to oxygen con-
ducting SOFC (O-SOFC) in terms of none-dilution of fuels at anode,
better theoretical efficiency and optimal performance at low working
temperature. However, electrode materials sustainability and avail-
ability on the long-term were never investigated. Thus, the main goal of
the present study is to provide a brief overview of electrode materials
development from a sustainable point of view, focusing mainly on the
availability of heteroatoms in the periodic table on the long term. The
flowchart in Fig. 3 provides an overview on the topics addressed in the
present review study.

2. SOFC electrode materials
2.1. Anode materials

The anode of SOFCs is typically made of porous ceramic materials.
These ceramic materials can either be nickel-cermet or lanthanum
chromite (LaCrOs) [25,26]. Anodic material must possess high elec-
tronic conductivity, robust stability, and effective thermal compatibility
with other cell components. It should also possess considerable elec-
trocatalytic efficiency to facilitate oxidation reactions and possess
optimal porosity for the effective transport of carrier gases in the high
temperature. Several doped perovskite materials have been developed
over the past few years as possible anode materials. Nickel anode-based
materials are mainly employed in SOFC due its cost-effectiveness and
ease of synthesis. To maintain the required porosity and prevent the
sintering of nickel particles at high operating temperatures, the anode
materials are dispersed with solid electrolyte materials to form cermet
[27,28]. This provides compatible thermal expansion coefficients with
the solid electrolyte, preventing any issues associated with adhesion
during operation. Solid electrolyte plays a critical role as supporting
material for anode, which can impact the anode’s catalytic properties.
Ce(.9Srg.1Cro.sMng 5s03.5 (CSCMn) was synthesized via the gel combus-
tion method, and investigated as a potential anode for SOFC using
Cep.gSmp 2019 (SDC) electrolyte [29]. The CSCMn demonstrated
excellent chemical compatibility with SDC in Ny environment, but
showed structural changes and sulfide formation after exposure to 5 %
H5S-N, at 800 °C. The effect of sulfide formation on the electrochemical
performance of the material needs to be investigated. Further experi-
ments are needed to analyse the changes induced by the new phase.

In recent years, efforts have been centred on investigating electrical
conducting oxides as potential alternatives to Ni-based anode materials
[30,31]. These oxides have demonstrated good stability under oxidizing
and reducing conditions. The use of oxides as anode in SOFC presents an
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Fig. 1. Schematic diagram of a generalized solid oxide fuel cell.
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Fig. 3. Overview of the topics addressed in the present study.

exciting solution to the various challenges associated with nickel cermet
anodes, including carbon deposition, sulphur poisoning, sintering, and
the potential formation of nickel oxide under an oxidizing environment.
Oxides showing promise as potential anode materials include lanthanum
chromite (LaCrOs3) and strontium titanate (SrTiOs3), both of which have
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been extensively investigated along with various doping of A and B sites
[32-34]. Lag 7Srg 3Cro gTip 203 has been analysed as possible replace-
ment for LaCrO3 (lanthanum chromite) series [35,36]. While strontium
titanate has also been investigated with niobium and lanthanum sub-
stitutions, such as Srg ¢Tig.2Nbg gO3 and Lag 4Srg ¢TiO3 [37]. Among the
new series of perovskite anode materials that were recently synthesised,
those belonging to LaCrO3 demonstrated good anodic properties, low
polarization resistance and low thermal expansion coefficient. Further-
more, mixed-conducting oxides such as terbia- and titania-doped YSZ,
with yttria-doped ceria, have demonstrated potential to be an excellent
anode material since it can significantly reduce overpotential losses at
the anode. Fig. 4 illustrates the good polarisation resistance in
Lag.75Srg.05Crg sMng 5s03.5 (LSCM) anode material series with CGO
electrolyte. The maximum values of polarisation resistance reported for
this group of materials are less than 0.3 Q/cm? [38,39]. This facilitates
the exchange of charges between the anode-electrolyte interface.
Despite the exceptional properties of these materials, pure LSCM
demonstrated limited activity in the oxidation of HjyS-free fuels.
Nevertheless, it displayed a superior balance between high chemical
stability in a sulfur/carbon environment and adequate electrical con-
ductivity compared to other anode materials [40]. Thus, LSCM could be
a suitable anode matrix, with its properties further optimized depending
on the chosen fuel. The sustainability of this group of materials needs to
be investigated, as lanthanum-based materials have been heavily used in
materials development for energy conversion devices. Its continued
availability in the long term and level of depletion are currently un-
known. Hence, a comprehensive study is needed to establish its exact
reserve on the earth’s surface.

A recent investigation identified alternative anode materials that
show significant potential for enabling the direct electrocatalytic
oxidation of hydrocarbon fuel through the utilization of electrochemi-
cally pumped oxygen ions, thus negating the necessity for any additional
co-fed oxidant [42-44]. Some of the new anode materials investigated
consist of copper-based materials, with substantial amounts of ceria
incorporated in addition to YSZ [45,46]. While other options include the
addition of yttria-doped ceria to nickel and YSZ. The practicality of using
such anodes for direct hydrocarbon oxidation remains uncertain due to
the extremely harsh synthesis conditions required. Their long-term
performance is also a major concern, as deactivation caused by carbon
deposition will likely occur. The development of these anodes is
currently an active field of research. Table 1 summarises previous
studies on anode materials used for SOFC applications.

Comparative analysis of Table 1 shows that Lag43Cag.37Nig.06.
Tig.9403.5 has the highest power density of 0.94 W/cm? at 900 °C. This
indicates that low doping with La yielded better power density
compared to high doping of composite Lag 75519 25CrosMngs03_s-
Ce.gGdp 2079 at 800 °C. Generally, materials with La composition
exhibit favourable electrochemical performance and are often
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Fig. 4. EIS Nyquist plot obtained at 600 °C under wet Ar/H, (5 %) for (a) LSCM-, (b) LSCy 4MRug ;- and (c) LSCMj 3Nig »-based symmetrical cell, fitted with the

equivalent circuit (d) proposed and subtracted from Rs [41].

compatible with commonly used SOFC electrolyte (YSZ/GDC). This
compatibility ensures an optimal interfacial contact and minimal
interface resistance between the anode and electrolyte, which are
crucial for efficient ion transport in SOFCs. However, this group of
materials are susceptible to poisoning by certain impurities present in
the fuel or atmosphere, such as sulfur compounds. This poisoning can
lead to degradation of the anode performance over time and necessitate
frequent cleaning or regeneration steps to maintain optimal operation.

2.2. Cathode materials

The cathode materials used in solid oxide fuel cell should have
excellent thermal compatibility with electrolyte to avoid delamination
during high operating temperatures. It should possess high electronic
conductivity, good ionic conductivity and have a porous structure
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[63-66]. The cathode plays an important role in SOFC performance, as it
is responsible for facilitating the oxygen reduction reaction. To achieve
these goals, cathode materials must exhibit low polarization resistance,
and good stability. Some of the most used cathode materials in SOFCs
include lanthanum strontium manganite (LSM), lanthanum strontium
cobaltite (LSC), and lanthanum nickelate (LNO) [67-69]. Other mate-
rials such as samarium-doped ceria (SDC) and gadolinium-doped ceria
(GDC) can also be used as cathode materials in SOFCs in certain
conditions.

In SOFCs, it is a common practice to use cathode with two layers
[70]. The initial layer comprises mixed LSM and yttria-stabilized zir-
conia, which are similar to NiO/YSZ cermet used as anode. This meth-
odology improves the thermal matching between the cathode and
zirconia electrolytes, resulting in increased porosity and enhanced
resistance to sintering, while preserving the electronic conductivity
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Table 1
Various Anode materials investigated for SOFC applications.
Compositions Temperature Maximum power Ref.
°C) density (W/em?)
PrBaMn; gCog.205 (PBMCo) 900 0.12 [47]
Fe—Co/PrBag gSrp 2Mn,0s 800 0.68 [48]
(LaSr)g oFeq.9Cug 104 (LSFCu) 800 0.40 [49]
Ceo.2510.8F€0.95Ni0.0503 800 0.58 [50]
SV.5sM0g sNip 1045 800 0.22 [51]
Smg sBag.sMnOs.5 800 0.30 [52]
Ag-(Lao.60510.40)0.95C00.20F€0.8003. 800 0.07 [53]
x
Ni-Ceg cMng 3Feg 102 750 0.49 [54]
(PrBa)g.g9sFeq.4Cug 4Nbg 205, 5 750 0.27 [55]
CuO-ZnO-SDC 700 0.13 [56]
Lag 75Sr0.25C00 sMng 5035 800 0.36 [40]
CayFe;05-CazCo20s5 800 0.16 [57]
BayFe; sMog 506.5 800 0.908 [58]
SmBay 5Sr0.5C01 sFep 5055 825 0.032 [59]
Lag.43Cao.37Nio.06Ti0.9403-5 900 0.94 [60]
Lag.75S10.25Crog.sMng 5035 800 0.221 [61]
Ceo.8Gdo 201.9
SrMog gAlp 2035 850 0.633 [62]

[71]. The second layer known as the current collection layer is entirely
composed of LSM. Integrating platinum into LSM cathodes has demon-
strated efficacy in improving cell performance through the reduction of
electrical resistance at the interface between the cathode and the current
collector [72-74]. However, the high cost of platinum should be taken
into account when utilizing this technique.

Fig. 5 illustrates the thermogravimetry differential thermal analysis
(TG-DTA) of an LSM group of perovskites. The TG-DTA profile shows a
weight loss at approximately 401 °C, which can be attributed to the
evaporation of moisture from the sample and the formation of oxygen
vacancies. LSM has some limitations in terms of its electrochemical
compatibility with zirconia electrolyte, which usually limits sintering
temperatures to below 1300 °C. At temperatures exceeding 1300 °C,
manganese has been observed to undergo diffusion into the zirconia
electrolyte, resulting in adverse effects on both the cathode and elec-
trolyte components [75]. Despite the high operating temperatures of
SOFCs, the extent of manganese diffusion remains minimal, and exten-
sive long-term studies demonstrate no deterioration in the cathode
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resulting from the interplay between LSM and the zirconia electrolyte
[68,76]. Several investigations have demonstrated that up to a tem-
perature of 1200 °C, there is no evident reaction between LSM and
zirconia. However, at temperatures exceeding 1200 °C, the formation of
LagZro0; and SrZrOj3 occurs, particularly with increased levels of
strontium [77]. The electrical conductivity of LayZr,07 is over 100 times
less than that of zirconia. Fig. 6 shows the morphology analysis of highly
porous LSM series of cathode materials.

Doped lanthanum cobaltite (LaCoOg) has been extensively explored
as a cathode material in SOFCs owing to its inherent p-type conductivity
and the notable oxygen deficit it exhibits at elevated temperatures [79].
The substitution of divalent cation, especially strontium on the
lanthanum site can increase its conductivity, and further performance
enhancements can be achieved by replacing iron on the cobalt site [80].
LaCoOg exhibits superior electrical conductivity compared to LaMnO3
under similar conditions [81]. However, its use as cathode material in
zirconia-based SOFCs is generally limited due to its reactivity towards
zirconia and its ability to undergo reduction at high temperatures.
Moreover, LaCoO3 exhibits a substantially larger thermal expansion
coefficient than LaMnOs, which already surpasses that of yttria-
stabilized zirconia [82]. To address these issues, researchers have
attempted to enhance the linear thermal elongation of LaCoOs to better
match that of YSZ electrolyte by mixing LaCoOs with LaMnOs3 [83,84].
While primary findings on composite LaCoO3-LaMnOs is interesting, its
low polarization resistance at intermediate-temperature requires further
optimization.

LSCF has a higher electrical conductivity compared to LSM, which
makes it the preferred cathode material for IT-SOFC that uses gadolinia-
doped ceria or lanthanum gallate electrolytes [85]. The performance of
LSM cathodes is inadequate at low operating temperatures, and signif-
icantly restricts the overall SOFCs performance. Currently, there is a
considerable emphasis on developing cathode materials that exhibit
superior performance at low temperatures (<500 °C). The use of com-
posite cathodes has demonstrated some potential in achieving this goal.
Researchers continue to investigate new cathode materials that can
improve SOFC performance, such materials must have higher ORR and
good thermal coefficient at high temperature. Advancements in cathode
materials could lead to more efficient, cost-effective SOFC with broader
applications in energy generation. Table 2 gives an overview of previ-
ously investigated cathode materials for SOFC application.
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Fig. 5. TG-DTA profile of LSMN7382 dry gel at a temperature of 40-800 °C [78].
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Fig. 6. (a) Scanning electron microscope (SEM) of LSMN7382 nanopowder and (b) corresponding elemental analysis (EDAX) [78].

Table 2
Previous studies on cathode materials for SOFCs application.
Compositions Temperature Polarization Ref
“C) resistance
(Ohm/cm?)
Ndo sBag sZrosFep 2035 800 0.206 [86]
Bag 55r0.5C00.8F€0 2035~ 600 0.45 [87]
Smy 2Ceo.801.9
CuBiy04 700 0.58 [88]
PrBaFe; 9Mog 1055 800 0.092 [89]
NdBaCo, 5Cug.50s.:5 700 0.67 [90]
BaZrg 125Y0.125F€0.7503 600 0.18 [91]
40CuFe04-60GDC 800 1.17 [92]
PrBaCoy0s.5 800 0.181 [93]
Lag 75r0.3C00.25F€0.25Nip.2sMng 2503. 600 5.24 [94]
5
PrBag gCap 2C020s5. 5 700 0.166 [95]
Lag,gSr.2C00.2Feg g03. 750 0.16 [96]
5@Gdo.2Ceo.801.9
SryFe; 5S¢ 506-5 700 0.043 [97]
Smy 5S19.5C003 700 0.5 [98]
SryFe; sMog 4Ing 1065 800 0.046 [99]
Bay 5S8r0.5(C00.8F€0.2)0.96210.0403-5 600 0.23 [100]
Nd; sBa; sCoFeMnOg_5 700 1.1273 [101]
Lag gBag.1Big 1FeO3 550 0.33 [102]
Ba(Cog_4Feo.4Z10.1Y0.1)0.95Ni0.0503.5 550 0.607 [103]

In Table 2, SroFe; 5S¢y 5065 has a polarization resistance of 0.043
Ohm/cm? at 700 °C, followed by cobalt-containing materials, with
Bag 5Sr0.5(Cog.gFep.2)0.96Zn0,0403.5 having a polarization resistance of
0.23 Ohm/cm? at 600 °C. A critical overview of Table 2 also showed that
cobalt-containing cathode materials has better R;, at low temperatures
compared to cobalt-free cathode materials. Cobalt-containing oxides
possess a balanced combination of electronic and ionic conductivity,
which is crucial for efficient charge transport in SOFC cathodes. This
balanced conductivity enables rapid oxygen ion diffusion through the
cathode material, facilitating oxygen reduction and minimizing polari-
zation losses. However, cobalt-containing perovskite cathodes may react
with impurities present in the fuel or air streams, leading to the for-
mation of secondary phases or surface contaminants. These reactions
can alter the cathode’s surface chemistry, decrease catalytic activity,
and increase polarization resistance, ultimately compromising cell per-
formance and durability. High polarization resistance in SOFC electrode
materials reduces cell efficiency, and causes voltage loss, lower power
output, incomplete fuel utilization, and material degradation. Mitiga-
tion strategies include developing advanced materials, doping, opti-
mizing microstructures, and adjusting operating conditions.
Furthermore, cobalt is relatively expensive and sensitive material, with
concerns about its supply chain sustainability and environmental im-
pacts. High cost of cobalt can significantly affect the overall cost of
SOFCs and limit their widespread commercialization, prompting study
on cobalt-free cathode materials.
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2.3. Symmetrical solid oxide fuel cell electrode materials

Symmetrical solid oxide fuel cell (SSOFC) offers enhanced thermo-
mechanical compatibility between the electrolyte and electrode, cost-
effective fabrication, and increased resistance to coking and sulfur
poisoning. Initially restricted to electrode materials with stable phase
structures in both reducing and oxidizing environments. However,
ongoing investigations are exploring novel electrode materials that can
undergo beneficial phase transitions or reductions in reducing atmo-
spheres. Meng et al. [104] developed SOFC with tri-layer porous/dense/
porous Lag ¢Srg 1GapgMgp203_s (LSGM) structures and nanoscale
SrFe(.75M0g.2503_s (SFMO) catalysts. They observed exceptionally high-
power density of 0.97 W/cm? at 800 °C with hydrogen fuel. Impedance
measurements showed higher polarization resistances in hydrogen
compared to air (0.22 vs 0.04 Q/cm? at 800 °C). The adsorption of
hydrogen on SFMO catalysts and charge transfer at SFMO/LSGM in-
terfaces was identified as rate-limiting steps for hydrogen oxidation at
high and low temperatures. Additionally, the composites achieved
excellent carbon resistance in iso-octane fuels, reaching a power density
of 0.39 W/cm? at 800 °C. Although the results are remarkable, the po-
larization resistance of 0.22 Qecm? at 800 °C in a hydrogen environment
is too high for effective oxidation of fuel. Gao et al. [105] infiltrated
PryNiO4 (PNO) with SDC to develop a bi-electrode for symmetrical
SOFC. In-situ exsolution of Ni nanoparticles on PNO after Hy reduction
increased hydrogen oxidation at the anode. SDC infiltration improved
ORR performance at the cathode. The symmetrical cell achieved a
maximum power density of 375 mW/cm? at 800 °C with Hy and air.
PNO-40SDC/SDC/PNO-40SDC cells demonstrated no degradation after
168 h at 750 °C and demonstrated stability during Hy/air cycling, sug-
gesting PNO as a promising electro-catalyst for SOFC. However, nickel-
based materials faced significant challenges of carbon deposition,
leading to a decline in cell performance.

The doping of Ca on the A-site significantly enhances the catalytic
efficiency of anodic—cathodic reactions, and improves CO; tolerance
[106]. Ca-doped PrgsBagsFeOs3-(Ca-PBF) electrode exhibits excellent
redox resistance, electrochemical activity, and durability. At 700 °C, the
polarization resistance was reduced for both cathode and anode,
compared to PBF (without Ca-doping). The optimal power density
reached 480 mW/cm? with Hy fuel, indicating Ca-PBF as a suitable
electrode material for symmetrical solid oxide fuel cell due to its
excellent stability and catalytic activity. In Fig. 7, the electrochemical
impedance spectra of PBF/Ca-PBF measured in wet Hy (3 % Hy) is
shown. Zhang et al. [107] investigated the doping effect of Ni, Cu, and
Co on the B-site of SryFeNig 2Cug.2C0g1M0g506 (SFNCCM). The mate-
rials possess good structural stability, excellent thermal compatibility
with GDC, and a maximum electrical conductivity of 21.7 S/cm at
800 °C. The average TEC for SENCCM was estimated to be 18.3 x 107°
K ™! at 30-1000 °C. SENCCM has an area specific resistance of 0.046 Q
cm? at 800 °C, with an optimal power density of 610 mW/cm?. How-
ever, at high operating temperatures, new phases were formed with
increased oxygen vacancies affecting material stability, suggesting
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Fig. 7. Electrochemical impedance profile of PBF and Ca-PBF measured in wet H; (a, ¢) and air (b, d) [106].

potential improvement by doping with high-valent or high-bond energy
metals. Thus, further studies are needed to improve the stability of this
material at high temperatures. Sr and Ge-doped
PrBa 5Srg sFe;.90Gep 1055 (PBSFG) shows promise compared to
PrBaFe;0s. 5 (PBF) as electrode material in SSOFC and CO;, electrolysis
[108]. In SSOFC mode, a stable 1.05 W/cm? power density was achieved
at 800 °C. For CO;, electrolysis, stable mode was attained at 850 °C and
1.5 V. PBSFG shows a high current density of 825 mA/cm? compared to
370 mA/cm? for PBF. The DRT, Tafel slope, XPS, and ECR tests
demonstrated improved catalytic activity and improved electrochemical
reactions. The high cell performance is attributed to improved oxygen-
ion-vacancy concentration and charge-transfer rate, particularly in
fuel electrode reactions like CO, adsorption and dissociation, suggesting
Sr and Ge-doped PBF as a favourable candidate for electrodes in SSOFCs.
Table 3 summarises recent findings in symmetrical solid oxide fuel
electrode materials development.

Based on the data presented in Table 3, Srg gFeg gSco.1C00.103_5 €x-
hibits the lowest polarization resistance of 0.117 Ohm/cm? at 850 °C,
suggesting its potential as electrode material in SSOFC.
Pt@C-Nig gCop.15Al0 05LiO2_5, operating at a lower temperature of
550 °C, exhibits a higher polarization resistance of 0.24 Ohm/cm?
despite the high polarization resistance this material could still be viable
for SSOFC electrode if composite YSZ-Pt@C-Nig gCoq.15Al0.05Li02_5/

GDC/Pt@C-Nig gCop 15Alp,05sLiO2_5 are used. Generally, low

Table 3

Symmetrical solid oxide fuel cell electrode materials.
Material compositions Temperature Polarization Ref.

(§®)) resistance (Ohm/cm?)

Sro.oFeg §Scp.1C00.103_5 850 0.117 [109]
Pt@C-Nig gC0¢.15Al0,0sLiO2_5 550 0.24 [110]
Lag,cBag.4Nip 2Feo 7Tio.103-5 800 0.153 [111]
Ndy.oCep 1BaCoFeOs, 5 700 0.078 [112]
Gd,SrCog gFe; 2075 800 0.106 [113]
SroFey.5Mog.506.5 700 0.62 [114]
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polarization resistance in electrode materials is desirable for SOFC ap-
plications. It enhances performance and efficiency by minimizing
voltage losses, improving power output, ensuring better fuel utilization,
and reducing heat generation and material degradation. The study on
symmetrical solid oxide fuel cell is still an active area of research, and
more investigations are needed to gain full insight into electrode ma-
terials that can provide excellent electrochemical performance as anode
and cathode.

2.4. Sustainable electrode development in solid oxide fuel cell

Heteroatoms play a crucial role in improving ionic conductivity,
catalytic activity, and overall performance of SOFC. However, their
environmental impact and the search for alternative materials are
important considerations in the advancement of SOFC technology. Some
of the commonly used heteroatoms include nickel, cobalt, lanthanum,
yttrium, and cerium, each with associated environmental challenges in
extraction and processing. Sustainable strategies involve exploring
alternative materials like copper, iron, and bismuth oxide, improving
recycling processes, and adopting green synthesis methods. Sustainable
electrode materials development for SOFCs involves enhancing perfor-
mance while reducing costs and environmental impact. The use of novel
nanostructured materials, such as perovskites and ceria-based compos-
ites, to improve electrochemical activity and stability has endangered
some groups of elements in the periodic table. Some elements are rarely
used due to issues such as limited availability, toxicity, and challenges in
waste management [115,116]. Notably, elements like cobalt (Co) and
nickel (Ni), despite their favourable electrochemical properties, present
challenges such as scarcity, environmental impact from mining, and
difficulties in end-of-life disposal. Nevertheless, recent studies have
focused on the development of cobalt-free cathode materials and nickel-
free anode materials. Fig. 7 provides an overview on the sustainability
profiles of the elements used in electrode materials compositions for
SOFCs. The elements not coloured do not have a verified sustainability
profile. Current knowledge on their exact reserve is limited, thus urgent
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studies are needed to explore and understand their estimated remaining
deposit. Gold (Au) is highlighted in red in the sustainability ranking,
indicating limited availability and emphasising the need for its cautious
utilization. Based on verified known reserves, Au has 5-20 years before
its known reserves get depleted. However, Au is hardly used in electrode
material preparation in SOFC but is mainly employed as current col-
lectors in electrochemical analysis due to its high melting point
compared to silver wires.

Several initiatives have been taken to recuperate and recycle metals
used in SOFC electrode materials. However, the development of efficient
recycling systems remains challenging. The intricate process of sepa-
rating and recycling mixed-metal electrodes, which often include a va-
riety of elements, presents technical obstacles. Although some metal
recovery processes have proven successful, broader implementation is
hindered by the complexity of the recovery technique and high cost.
There is a growing inclination towards utilizing elements characterized
as “green” in Fig. 8 due to their favourable environmental properties,
sustainability, and abundant availability. Elements such as manganese
(Mn), cobalt (Co), and strontium (Sr) emerge as alternatives to the green
elements owing to their minimal toxicity and potential for effective
recycling [118]. It is imperative to recognize that achieving complete
sustainability in electrode materials development for SOFC may require
performance trade-offs. The harmonization of electrochemical effi-
ciency with sustainability criteria remains a persistent challenge in the
field of energy materials development. Nonetheless, advancements in
green chemistry principles and sustainable practices continue to drive
innovation towards more eco-friendliness SOFC electrode materials
development.

3. Future research direction on sustainable electrode materials
development for SOFC

The high energy conversion rate of SOFC (around 60 %) makes it one
of the most effective clean energy technologies. Sustainable electrodes
are not only crucial for the long-term survival of SOFC, but also aid in
attaining the world objective of a near net-zero emissions by 2050
[119,120]. Hence future research directions must focus on the
following:
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Nanostructured composite electrodes have shown excellent electro-
chemical performance in air and Hy environments. Hence this set of
electrode materials should be prioritised for further investigations in
symmetrical SOFC configuration.

New catalyst materials and integration techniques should be utilized
to enhance the mechanism of oxygen reduction and fuel oxidation
reactions. The expensive nature of Pt, Co and Ni, means that other
novel materials must be investigated.

Ba, Sr, and Ca have mainly been used as dopants to enhance the
thermal stability of electrodes with YSZ and GDC electrolytes.
However, the use of Sc as a dopant in Srg gFeg gScy1C0¢.103-_5 as
reported in this study aids in mitigating the thermal degradation of
electrodes at high temperature. Future studies need to focus on the
use of Sc as a dopant with other series of perovskite materials.
Developing cost-effective and abundant materials without compro-
mising performance needs to be studied.

More investigation is needed to understand the exact mechanism for
electrode—electrolyte interface optimization for ion and electron
transport, reducing polarization losses and improving overall cell
efficiency.

Several investigations have relied on the use of metal oxides as
electrode materials, thereby endangering some vital elements in the
periodic table. Future studies must be carried out on the possibility of
using agricultural waste, and other sustainable means of electrode
materials development. However, there specific chemical composi-
tion must be investigated, as some of the agricultural waste contains
some of the endangered elements in the periodic table.

Based on the sustainability profile, elements in green should be
favoured for future investigations on SOFC electrode materials
development. However, highlighted in green colour also include
expensive and rare metals like Sc and some lanthanoids, toxic Cr, but
doesn’t include Fe, hence performance trade-off must be looked into
critically over long-term availability in the selection of some specific
heteroatoms.

It is necessary to develop and acceptable methods to determine what
are the specific criteria for sustainable electrodes in SOFC. Several
gaps remain, and complete knowledge on SOFC sustainable elec-
trodes are limited.

1 Remaining years until 2
H depletion of known reserves He
1.00794 4.002602
3 4 5 6 7 8 9 10
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Li Be B (3 N (o] E Ne
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Fig. 8. Sustainable profile of elements in the periodic table [117].
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4. Conclusions

Sustainable electrode materials are crucial for enhancing the effi-
ciency, durability, and commercial viability of solid oxide fuel cell. This
mini review highlights several key constraints and challenges faced in
the development of sustainable electrode materials for SOFCs, paying
close attention to the availability of heteroatoms in the long term. The
high operating temperatures of SOFCs present a fundamental constraint,
limiting the selection of suitable electrode materials to those with
excellent thermal stability and conductivity. This has resulted in a
continuous search for new materials that can maintain good electro-
chemical performance and structural integrity under high operating
temperatures. The requirement for high electrochemical activity and
catalytic efficiency further complicates the search for ideal electrode
materials. Several promising materials exhibit insufficient electro-
chemical performance or suffer from poor chemical stability, hindering
their practical application. Strategies to enhance the intrinsic activity
and stability of electrode materials, such as nanostructuring, doping,
and surface modification, have been investigated but often come with
their own set of challenges and limitations. The most efficient electrode
material compositions, such as rare earth elements and precious metals
are expensive. Furthermore, the environmental impact associated with
the extraction, processing, and disposal of these materials raises con-
cerns about the overall sustainability of SOFC technology. The long-term
sustainability of heteroatoms, as illustrated in Fig. 7, is also of great
concern. Despite these challenges, significant progress has been made in
recent years towards the development of sustainable electrode materials
for SOFCs. Future studies must investigate the possibility of developing
green electrodes, where sustainable materials are given priority.
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