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Abstract: The accumulation of salt in arable lands is a source of significant abiotic stress, contributing
to a 10% decline in the world’s total arable lands and threatening food productivity and the sustain-
ability of agriculture. About 76 million hectares of productive land are estimated to have been affected
by human-induced salinization such as extreme salt deposits in soil, which are mainly caused by
the actions of humans. For instance, continued irrigation and the frequent use of chemical fertilizers
need to be understood. To ensure food availability, it is essential to improve upon traditional farming
methods using current technologies to facilitate the reclamation of saline-affected arable lands to
achieve high and sustainable food production. This review details current innovative strategies
such as the modification of metabolic pathways, manipulation of antioxidant pathways, genetic
engineering, RNA interference technology, engineered nanoparticles, arbuscular mycorrhizal fungi
(AMF), organic amendments, and trace elements for improving saline marginal lands. These strate-
gies were identified to have contributed to the improvement of plants salinity tolerance in diverse
ways. For instance, the accumulation of plant metabolites such as amino acids, sugars, polyols,
organic acids, saponins, anthocyanins, polyphenols, and tannins detoxify plants and play crucial
roles in mitigating the detrimental effects of oxidative damage posed by salinity stress. Multiple
plant miRNAs encoding the up- and down-regulation of single- and multi-ion transporters have
been engineered in plant species to enhance salt tolerance. Nanomaterials and plant root system
colonized by arbuscular mycorrhizal increase water uptake, photosynthetic efficiency, and biomass
allocation in plants exposed to saline stress by excluding 65 percent of the Na+ uptake and enhancing
K+ uptake by 84.21 percent. Organic amendments and trace elements reduced salinity concentrations
by 22 percent and improved growth by up to 84 percent in maize subjected to salinity stress. This
study also discusses how researchers can use these strategies to improve plants growth, development,
and survival in saline soil conditions to enhance the productivity and sustainability of agriculture.
The strategies discussed in this study have also proven to be promising approaches for developing
salinity stress tolerance strategies for plants to increase agricultural productivity and sustainability.

Keywords: agricultural crops; improvement; increase; salinity stress; tolerance

1. Introduction

The issue of food security has been worsening in recent times due to the continuous
increase in the global population [1]. The global population, currently estimated to be
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7 billion, is expected to reach 10 billion within the next 50 years [1]. Feeding an ever-
increasing global population has become a significant issue. The high rate of population
growth, coupled with the decline of agricultural lands, are the most important contributing
factors impending agriculture productivity and sustainability [2]. Consequently, enhanc-
ing agricultural productivity represents the sole viable strategy for attaining future food
security [3]. Salinity, high temperatures, UVC radiation, and drought are significant envi-
ronmental stresses that have been reported to significantly negatively impact agricultural
productivity [4–9]. The total amount of salt dissolved in water is referred to as salinity. Salt
deposition in arable lands, predominantly sodium and chloride ions, can result in saline soil
conditions of arable lands. Salinity can be classified into sodic (alkaline) and saline soils [10].
Sodic soils are characterized by soils of a poor structure, commonly observed in arid and
semi-arid areas. These soils exhibit high Na+ concentrations at the exchangeable site of the
clay particles in most soils, with a pH above 8.5 and an exchangeable sodium percentage
(ESP) greater than 15 [10]. In contrast, saline soils are typically found in arid areas, estuaries,
and coastal fringes, where the electrical conductivity (EC) is greater than 4 dS/m, corre-
sponding to approximately 40 mM NaCl [10,11]. Saline soils exhibit an ESP of less than 15
and a lower pH than sodic soils [10]. Salinity harms plant growth and development, causing
osmotic stress, ionic toxicity, hormonal imbalances, and a reduction in nutrient uptake and
mobilization [12,13]. Salinity also enhances the accumulation of reactive carbonyl species
such as acrolein, 4-hydroxy-(E)-2-nominal (HNE), and 4-hydroxy-(E)-2-hexenal (HHE),
which are downstream products of reactive oxygen species (ROS) [14,15]. The generation
of reactive carbonyl species in plant organs can lead to slowed growth, senescence, wilting,
drying, and even plant death [7,14,15]. These findings are supported by numerous reports
documenting the agricultural output reduction resulting from these environmental factors.
As reported by Saghafi et al., about 800 million hectares, representing 6% of the world’s
total land area, are affected by saline stress conditions, and this percentage continues to
increase [2]. This evidence indicates that soil salinity stress represents a significant problem
that can inhibit agricultural plants’ growth, development, and productivity [16]. Therefore,
it has become of paramount importance to gain insight into the mechanisms regulating
plant tolerance to saline soil stress conditions.

Plants use strategies involving physiology, biochemical, and molecular mechanisms
to respond to different levels of salinity. Antioxidant enzyme activity, the synthesis of
osmoprotectants and antioxidant compounds, plant ion uptake and transport, polyamine
and nitric oxide synthesis, and hormones modulation serve as the principal strategies that
plants use to mitigate salinity stress [17]. Plants have been classified into two categories
based on their capacity to flourish and persist in saline soils: glycophytes and halophytes.
The majority of plants classified as halophytes can survive in saline conditions. This is
achieved through root and shoot salts exclusion, ions compartmentation in various organs,
and the synthesis of compatible solutes that are adopted in salt stress mechanisms. Recently,
it has been demonstrated that new ecotypes of Sarcocornia plants exhibit higher biomasses
under nitrogen and salinity conditions [18]. However, plants classified as glycophytes
constitute the bulk of agricultural crops, which are highly susceptible to salinity stress [19].
To enhance the resilience of farming plants to this challenge, it is essential to elucidate
additional strategies that breeders can employ to improve the growth, development, and
survival of plants in saline soil conditions, thereby promoting increased productivity and
sustainability in agriculture. This review will discuss the current innovative plant strategies
used to tolerate salt stress to increase and sustain productivity. Additionally, the prospects
for future study of plant responses to saline soil conditions will be considered.

2. Sustainable Plant Strategies in Mitigating Salinity Stress Conditions

Saline stress has a considerable impact on plants and their environment, which has led
to the development of various strategies and technologies to alleviate the harmful effects of
stress on plant growth, development, and physiology [20]. Plant response to salinity stress is
a complex phenomenon and this involves multiple physiological and biochemical processes,
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including various genes (Table 1). The increase in soil salt concentration negatively disturbs
plant nutrient and water uptake, which results in the accumulation of toxic ions. Plants
that are tolerant to salinity conditions maintain proper cellular ion homeostasis, which
is essential for their growth, development, and survival. This homeostasis is attained by
enhancing the regulation of ion uptake, vacuolar compartmentalization, and active ion
extrusion to the external environment [21,22].

The innovative approaches that scientists are investigating to improve plants exposed
to salinity stress adaptation include the modification of metabolic pathways, manipulation
of antioxidant pathways, advancements in genetic engineering on salinity stress, RNA in-
terference technology, engineered nanoparticles to alleviate salinity, arbuscular mycorrhizal
fungi (AMF) for salt stress alleviation, the application of organic amendments, and trace
elements for improving plant salt stress (Figure 1). These approaches facilitate the allocation
of greater resources toward developing and enhancing plant salinity tolerance mechanisms,
which will be discussed in detail in the subsequent sections [22]. This enhances our un-
derstanding of how most agriculture crops can be improved to adapt to salinity stress
conditions; for instance, employing the genetic variability of numerous agricultural crops in
different gene banks to develop stress-tolerant crops. These approaches offer a sustainable
method of mitigating salt stress.
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Table 1. Ion transporter and their genes associated with plant resistance to salt stress.

Protein Genes Plants Host
Genes Gene Function References

Na+/H+ antiporter
in the plasma

membrane

SOS1 Ion balance;
maintaining membrane vesicular trafficking

Oh et al., 2016
[23]

GmSOS1 Glycine max
Minimization of electrolyte leakage on leaf

surface;
decreasing Na+ concentrations in leaves

Zhao et al., 2017
[24]

TdSOS1 Triticum turgidum

Greater water retention capacity of shoots
and roots;

retained low Na+ and high K+ in shoots and
roots

Feki et al., 2014
[25]

CrcSOS1
CcSOS1
AjSOS1

Crossostephium
chinense

Chrysanthemum
crissum

Artemisia japonica

Mediating Na+ efflux at the plasma
membrane;

Gao et al., 2014
[26]

Na+, K+/H+

exchangers

NHX
Osmoprotectant maintaining Na+/K+ ion
transport in exchange for H+ in the cells

under salt stress

Amin et al., 2021
[27]

PutNHX1
SeNHX1

Puccinellia
tenuiflora

Salicornia europaea

Improves Na+ sequestration in the vacuole
and K+ retention in the cytosol and vacuole

of root cells

Liu et al., 2017
[28]

PeNHX Populus euphratica Sequesters Na+ into the root vacuoles to
alleviate Na+ toxicity in stems and leaves

Ye et al., 2009
[29]

SpNHX3
Solanum pennellii

Increases transcript levels of vacuolar
transporters of Na+ in leaves

Albaladejo et al.,
2017
[30]SpNHX4

High-affinity
potassium
transporter

HKT Decreases Na+ in the shoots;
Na+ exclusion and K+ influx

Gu et al., 2023
[31]

AvHKT1 Actinidia valvata
Decreases accumulation of Na+ and K+;
decreases lipid peroxidation (decreased

MDA)

Gu et al., 2023
[31]

BsHKT1;2 Bienertia
sinuspersici

Transports more Na+ into xylem
parenchyma cells

Irulappan et al.,
2023
[32]

NsHKT1 Nitraria sibirica
Prevents shoot Na+ accumulation;

influences secondary metabolism and signal
transactions

Zhang et al., 2024
[33]

Na+/Ca2+

exchanger-like
protein

NCL Transports Ca2+ to the vacuole through the
exchange of Ca2+ and Na+

Yuan et al., 2024
[34]

Ncl Glycine max Decreased accumulation of Na+, K+, and Cl
ions in the shoots

Do et al., 2016
[35]

AtNCL Arabidopsis

Na+/Ca2+ exchange;
maintenance of Ca2+ homeostasis

Wang et al., 2012
[36]

Vacuolar Ca2+ regulation;
auxin response;
flowering time

Li et al., 2016
[37]

TaNCL2 Triticum aestivum
Ca2+ enrichment in the cytoplasm by

transporting it from the vacuole in the
exchange of cytosolic sodium Na+

Shumayla et al.,
2023
[38]
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2.1. Modification of Plant Primary Metabolite Response to Salinity Stress

Primary metabolic processes represent a fundamental aspect of normal plant cell
function. Such processes relate to numerous physiological and biochemical processes,
including gas exchange and chlorophyll fluorescence. The energies that are involved in
these processes and other precursors are necessary for synthesizing the compounds essen-
tial for various plant developmental processes [39,40]. Primary metabolites encompass
polyols, sugars, amino acids, and organic acids. It has been demonstrated that primary
metabolites serve as osmolytes, osmoprotectants, compatible solutes, and detoxification
agents in plants subjected to salinity stress [17,41]. These compounds are small, non-toxic,
hydrophilic molecules that do not affect cellular functions, even at high concentrations [42].
Kulkani et al. subjected Sesuvium portulacastrum to a 250 mM NaCl stress treatment for 8
and 24 h and reported the detection of 53 and 62 primary metabolites in the roots and
shoots, respectively [43]. They pointed out that the high score of the cumulative path-
ways of both the roots and shoots was aspartate–alanine–glutamate and concluded that
the analysis of metabolites and their salt responses pathways in halophytes will enhance
salinity stress tolerance in plants. Increased concentrations of compatible solutes in the
cytoplasm balance the decreased water potential, which is normally related to vacuole Na+

accumulation [44]. Additionally, primary metabolites can mitigate the repressing ability of
elevated ion levels of enzyme activities without affecting protein structure or function. For
instance, these compounds might act as antioxidants by scavenging free radicals, and they
can assist membrane stability in response to salinity stress [44,45]. The most prevalent com-
patible solutes in plants are polyhydroxy compounds (e.g., sucrose, oligosaccharides, and
polyhydric alcohols), as well as nitrogen-containing solutes (e.g., amino acids, quaternary
ammonium compounds, and polyamines) [45–47]. These solutes have the ability to stabilize
the enzymatic activities and structures of the cells and act as ROS scavengers, which serve
as an important mechanism for alleviating the harmful effects of saline stress on plants. The
metabolomic approaches employed when studying plants exposed to saline conditions and
the changes observed among salt-sensitive and tolerant plants revealed distinct patterns.
These patterns included two main categories: differences in the magnitude of metabolites
within tolerant and sensitive plants, and different plants exhibiting both conserved and
divergent metabolite responses to salinity stress [44]. Research conducted under control
conditions demonstrated that Thellungiella halophila, a salt-tolerant plant, exhibited higher
levels of sucrose, fructose, glucose, proline, inositol, galactinol, raffinose, citrate, malate,
and succinate compared to Arabidopsis [48]. This indicates that a deep understanding of
primary metabolites is important for enhancing the agricultural plant’s resilience to salt
stress, thereby ensuring sustainability in production.

2.2. Plant Secondary Metabolite Modification in Response to Salinity Stress

Generally, secondary metabolites are not a basic requirement for plant cell functioning
but are involved in the crucial role of protecting plants exposed to salinity conditions. Plant
species use a considerably different level of secondary metabolites when exposed to the
environment [49–51]. A significant proportion of these secondary metabolites have been
grouped into three main categories (Figure 2), including nitrogen-containing compounds
(e.g., alkaloids and glucosinolates), terpenes (terpenoids—e.g., isoprene-C5, monoterpenes-
C10, sesquiterpenes-C15, diterpenes-C20, and polyterpenoids-C5xn), and phenolic com-
pounds (e.g., phenylpropanoids and flavonoids) [52–54].

Plant secondary metabolite (SM) concentrations vary when exposed to salt stress-
induced osmotic stress and ion toxicity [49]. Anthocyanins have been observed to amass
in salt-tolerant plants and decrease in sensitive plants in response to saline soil stress
conditions [49,55]. Research has demonstrated that endogenous jasmonic acid and polyphe-
nols accumulate in tomato cultivars under salt stress conditions [55,56]. Several findings
have shown a correlation between peppers’ total phenolic content and plant polyamine
accumulation in response to salinity [57]. A salt-tolerant quinoa plant subjected to elevated
salinity conditions exhibited a pronounced accumulation of saponin levels compared to the
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control plants [58,59]. Furthermore, a correlation was demonstrated between saponins and
plant salinity tolerance, with a notable increase in triterpenoid concentrations observed
in the shoots and roots of Kandeliacandel and Bruguiera gymnorrhiza under high-salinity
conditions. In addition to saponins, other secondary metabolites have been observed to
have accumulated at high levels, instigating salinity stress tolerance by enhancing antioxi-
dant functions [49,60,61]. Saponins have also been found to be overexpressed in the shoots
and roots of Medicago sativa and Medicago arborea, respectively, indicating its critical role
in response to salinity stress [61]. Flavonoids, polyphenols, tannins, and anthocyanins are
secondary metabolites known to render antioxidant activity and accumulate in response to
salt stress [49,60]. Such alterations are conducive to a diminution of perturbational effects
on the production of crops.
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3. Manipulation of Plant Antioxidant Pathways Under Saline Conditions

Plants have evolved a complex antioxidant system to prevent cellular damage caused
by salinity stress (Figure 3). The primary components of this system are carotenoids,
ascorbate, glutathione, and tocopherols, in addition to the following enzymes: super-
oxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and peroxidases
(Figure 3) [62]. Furthermore, enzymes involved in the ascorbate–glutathione cycle, such as
ascorbate peroxidase (APX) and glutathione reductase (GR), have been found to lessen the
adverse effects of salinity stress (Figure 3) [63].

The manipulation of antioxidant enzymes and small antioxidant molecules in chloro-
plasts is essential to ensure the continuous productivity of agricultural plants exposed to
salinity stress. Numerous studies have shown that salt-tolerant plants exhibit high peroxi-
dase activity and enhanced antioxidant enzymatic activity and antioxidant contents [64].
For example, Sarker et al. showcased a salt-tolerant variety of Amaranthus tricolor (VA14)
that exhibited a high level of superoxide dismutase (SOD), ascorbate, and APX, in support
of the detoxification of reactive oxygen species (ROS) [65]. The investigation by Hussain
et al. on the salt tolerance of contrasting wheat cultivars revealed that low malondialdehyde
deposition in saline stress-tolerant varieties was associated with low membrane lipid perox-
idation [66,67]. The upregulation of the peroxidase gene GsPRX9 and enhanced antioxidant
activity in wild-type soybeans has been shown to enhance salt tolerance [68]. Seedlings
of barley showed a significant effect on the percent germination and enzymatic activity
changes, coupled with the roles of antioxidants and expressed genes in responding to salt
stress [69]. The findings demonstrated that numerous enzymes, molecules, and pigments
play crucial roles in mitigating the detrimental effects of oxidative damage, thereby enhanc-
ing plants’ salinity tolerance [70]. Deeper knowledge of antioxidant enzyme regulation
and their production is crucial for developing transgenic plants with modified levels of
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antioxidant enzymes, because elevated antioxidant production in response to specific stress
could lead to tolerance against multiple stressors.
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4. Advances in Plant Genetic Engineering to Withstand Salinity Stress

Under salinity stress conditions, agricultural cultivars exhibited differential gene reg-
ulation with diverse functions (Figure 4) [71]. These regulatory processes result in the
activation of different developmental and physiological mechanisms that are involved
in stress-associated growth and metabolic alterations [71]. To improve plant saline stress
tolerance, different approaches have been developed in advanced plant genetic engineering.
These approaches aim to regulate the activity of enzymes involved in functional metabolites,
antioxidant enzymes, transporters synthesis, and enzymes for membrane lipid biosyn-
thesis [72,73]. The encoded proteins include transporters and channels for ions, enzymes
associated with the biosynthesis of osmolytes, antioxidant systems, and protective proteins
such as late embryogenesis abundant (LEA) proteins. These proteins play a pivotal role
in the exhibition of salt stress-sensing and signal transduction pathways [74]. Substantial
recent findings have revealed the significance of transcription factors (TFs) belonging to
the TF families of ERF/AP2, bZIP, MYB, MYC, NAC, WRKY, and zinc-finger proteins as
regulatory elements in the modulation of salinity stress conditions [75,76]. Genes encoding
single- and multi-ion transporters, derived from multiple sources, have been engineered
in numerous plant species to enhance their salt tolerance. The overexpression of AtNHX1
and related NHX proteins has been demonstrated to enhance salinity stress tolerance in
several plants, including brassica, wheat, cotton, tobacco, tomato, and soybeans [77–82].
Over the years, halophytes have served as a primary source of genes to enhance salinity
stress tolerance in numerous plant cultivars. For instance, the expression of a vacuolar
H+-ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora led to
an improved rice salinity stress tolerance [83]. An associated study on a genome-wide of
350 barley genotypes at seed germination annotated 19 loci including less than 50 molecular
markers associated with salt stress tolerance [84]. Salt tolerance-related genes within species
can be generated through the process of mutation or genetic engineering. Salt tolerance-
related genes within species can be generated through the process of mutation or genetic
engineering. Consequently, this is used as donors in genetic engineering integration into
plant breeding programs has targeted developing plants tolerant to saline soil conditions,
representing a significant and valuable advancement.

BioRender.com
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RNA Interference Technology for Enhancing Plants’ Saline Soil Stress Tolerance

When subjected to salinity stress conditions, the up and down-regulation of transcript
plant genes plays a critical role in post-transcriptional genes in plants grown in saline soil
conditions [85]. For instance, Arabidopsis thaliana, Oryza sativa, Phaseolous vulgaris, Populus
trichocarpa, and other plant species have been investigated for the importance of microRNA
(miRNA) in response to saline soil stress (Figure 5) [86]. A research work on Arabidopsis
revealed the differential regulation of several miRNAs in salt-stressed tissue [87]. In
response to salinity condition, several miRNAs were upregulated in Arabidopsis, including
miR156, miR158, miR159, miR165, miR167, miR168, miR169, miR171, miR319, miR393,
miR394, miR396, and miR397, while miR398 was down-regulated, thus indicating adaptive
response of miRNAs under salt stresses. In P. vulgaris miRS1 and miR159.2 was also
up-regulated under salt stress [88]. Up-regulation of miR530a, miR1445, miR1446a-e,
miR1447, miR171l-n and down-regulation of miR482.2 and miR1450 were also observed
in P. trichocarpa plants under salt stress conditions. These findings indicate the crucial
role that miRNAs play in environmental stress conditions—particularly saline soil stress
conditions—and it can be an important tool to create cultivars that are tolerant to salt stress
conditions [87].

The targets of the sulfurylase and ASP1 genes are expressed in salt-induced soybean
lines under sulfate starvation conditions and are regulated by miR395. This suggests that
miR395 may play a role in nonspecific salt-stressed pathways, such as those involved
in energy supply maintenance [89]. The homologous artichoke cca-miR397 and 399 are
members of a laccase gene family that has also been found to participate in salt stress re-
sponse [89]. In artichokes, reduced expression of miR397 in the roots during salt stress has
been observed, leading to enhanced expression of laccase [89]. A multi-copper-containing
glycoprotein laccase is present in plants and contributes to lignin formation. The upreg-
ulation of the laccase gene is enhanced by a high concentration of NaCl in tomato and
maize roots. The AGROUNAUTAE1 (AGO1) gene, which encodes for the RNA slicer
enzyme in the miRNA pathway, is regulated by miR168 [90–93]. It can be observed that
both AGO1 and miR168 are important in maintaining an equilibrium between the target
miRNA and their targeted gene. Furthermore, miR168 has been identified in maize sub-
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jected to salt stress [94]. In a recent study on rice, Wan et al. proposed that miR168 directly
regulates AGO1-dependent gene regulation, which explains the differences in the salt stress
response of STTM168 rice roots and that of the non-transgenic controls [95]. It has been
previously proposed that miR168 may interfere with salt stress responses by downregulat-
ing its target gene AGO1, thereby affecting the activities of other miRNAs. Furthermore,
it has been demonstrated that miR319, which acts positively to enhance salt response
mechanisms, inhibits its target genes at the post-transcriptional level. The group identified
the following genes as differentially expressed between the STTM168 and non-transgenic
control plants: LOC_Os02g03840.2, OsRCI25 (LOC_Os03g17790.1), LOC_Os07g07270.1,
LOC_Os02g09480.1, and LOC_Os03g50540 [96]. The researchers observed that STTM168
improved rice salt stress tolerance and concluded that the miR168-AGO1 cascade may be
functionally conserved in plant salt stress adaptation. The results demonstrate that plant
genes can be up- or down-regulated, indicating that RNA interference (RNAi) technology
can be employed to enhance agricultural plants’ resilience to salinity stress. Importantly,
investigation and identification of miRNA-mediated gene regulation under salt stress will
improve our understanding of the complex regulatory networks involved in salt stress. A
deeper understanding of miRNA during salt stress will create new possibilities to enhance
plant tolerance under salt stress.
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5. Engineered Nanoparticles and Nanomaterials to Improve the Resilience of Plants
Exposed to Salinity Stress

Recently, nanotechnology has been highlighted for its innovative approach to im-
prove agricultural crop resilience in harmful environmental conditions, including salinity
stress [98,99]. Engineered nanoparticles are a highly promising avenue for mitigating salin-
ity stress, a phenomenon that presents a significant challenge to agricultural productivity.
Engineered nanoparticles applied in agriculture are ultra-small particles with distinctive
physicochemical properties, which can improve agricultural efficacy like fertilizers, pesti-
cides, and plant growth regulators [99]. Engineered nanoparticles have been developed to
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play specific functions in assisting the growth and development of plants in facing salinity
stress, including improvements in physiological processes and biochemical reactions, as
shown in Figure 6. Furthermore, these nanoparticles have been demonstrated to regulate
saline soil stress tolerance in wheat via alterations in abscisic acid (ABA) concentrations,
ion homeostasis, and defense systems [100].
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Engineered nanoparticle types have been made to mitigate the adversity effects of salin-
ity stress on plant species, with varying results. These include chitosan (Ch) nanoparticles,
silica (SiO2) nanoparticles, zinc oxide (ZnO) nanoparticles, iron oxide (IO) nanoparticles,
copper oxide (CuO) nanoparticles, silver (Ag) nanoparticles, silicon (Si) nanoparticles,
and titanium dioxide (TiO2) nanoparticles [22,101]. For example, TiO2 nanoparticles have
been demonstrated to improve salt-stressed tomato plants’ growth and photosynthetic
efficiency [22,101]. Similarly, Ag nanoparticles have revealed improvements in the toler-
ance of wheat cultivars under high salinity, increasing growth [98,100–102]. Additionally,
ZnO nanoparticles increased the survival of maize cultivars grown in saline soils [102]. In
contrast, CuO nanoparticles have been observed to hurt soybean plants’ growth under
saline conditions [103]. Furthermore, cerium oxide (CeO2) nanoparticles resulted in stunted
growth of maize plants grown in saline soils [104]. The application of engineered nanopar-
ticles in agricultural systems is known to improve water retention, increase antioxidant
activity, and regulate ion transport and uptake in plants under salt stress conditions [22].

Carbon-based nanomaterials (CBNs) have also demonstrated efficacy in promoting
plant growth and alleviating abiotic stress, particularly salt stress, in a range of crops,
including bioenergy plants as engineered nanoparticles [105–107]. It has been shown
that CBNs not only play a role in improving salt stress tolerance but can also increase
seed germination rates and biomass production [99]. Additionally, nanomaterials have
been demonstrated to enhance water uptake, photosynthetic efficiency, and antioxidant
activities while reducing oxidative stress markers at lower concentrations [108]. CBNs can
safeguard plants by mimicking antioxidative enzymes and mitigating damage caused by
ROS [109]. However, higher concentrations of nanomaterials may induce phytotoxicity
and increase ROS generation [109]. These affect the physiology of plants, reducing growth
and development and eventually leading to the death in most plants. The application
of nanomaterials in agriculture presents both opportunities and challenges, necessitating
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further research to elucidate their behavior and effects on plants at the molecular and
subcellular levels under various agroecosystem conditions [110]. Therefore, there is a
need to highlight the research to understand the challenges that come with the use of
nanoparticles [109].

6. Arbuscular Mycorrhizal Fungi (AMF) and Plant Growth-Promoting Bacteria (PGPB)
Mediate the Growth of Plants Exposed to Salinity Stress

Plant root systems are mostly colonized by arbuscular mycorrhizal, which influence
growth and development, improving the resilience of plants exposed to saline stress
conditions (Figure 7). Numerous findings have described the role of AMF in improving
plant defenses against salinity stress. These findings have demonstrated that increases
in nutrient uptake, osmoregulator accumulation, improvements in photosynthetic rate,
and increases in water use efficiency are associated with the mitigation of saline soil stress
conditions by AMF [111–113].
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Several mechanisms have also been suggested for AMF symbiosis in alleviating salt
stress in plant hosts. Among them are plant growth and biomass, biochemical, physiologi-
cal, molecular, and ultra-structural changes [114]. Plant growth and biomass allocation are
hindered by salinity stress conditions. This may be because of the increase in the osmotic
potential of the salt-affected soils, which hinders nutrient uptake by plants. However,
AMF root colonization has been reported to result in increased nutrient uptake of the host
plant, improving growth and biomass allocation. Higher shoot and root dry masses were
recorded in mycorrhizal-inoculated Acacia nilotica seedlings than in uninoculated mycor-
rhizal seedlings [115]. A mycorrhizal tomato plant also reported increased shoot and root
dry mass, fresh fruit yield, fruit mass, and number of fruits compared to control plants [116].
The improved growth of AMF-colonized plants has been moderately ascribed to improved
nutrient uptake mediated by AMF; particularly improved phosphorous nutrition [117].
Together, these findings revealed the benefits of symbiosis in the alleviation of salinity
stress on agricultural plant cultivars.

In addition to AMF, plant growth-promoting bacteria (PGPB) also have great potential
to mitigate salt stress in plants. These bacteria enhance plant growth and salt stress tolerance
through different PGPB-mediated mechanisms such as the production of phytohormones,
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1-aminocyclopropane-1-carboxylic acid deaminase, and exopolysaccharides [14,118]. PGPB
induces hormones such as auxin, cytokinin, and gibberellin, while hormones such as ethy-
lene can be reduced by ACC deaminase. Ethylene is known to be involved in growth and
developmental processes; however, higher concentrations of ethylene can be detrimental
and inhibit plant growth. PGPB regulates ethylene levels in plants via ACC deaminase,
thus inducing plant tolerance under salt stress [119]. PGPB can also modulate antiox-
idant defense systems, maintain ion homeostasis, and induce salt-responsive genes in
plants [118]. For example, Klebsiella sp. SBP-8 has been demonstrated to enhance wheat
growth under salt stress conditions by increasing Na+ exclusion (65%) and K+ uptake
(84.21%) [120]. Moreover, the SBP-8 strain demonstrated increased 1-aminocyclopropane-
1-carboxylatedeaminase activity by up to 6% under salt stress conditions, indicating its
ability to survive and interact with plants in saline environments [120]. Thus, bacteria
containing ACCD with salt tolerance could be beneficial in saline environments, providing
positive effects on plants. Additionally, PGPB have been demonstrated to enhance nutrient
mobilization, nitrogen fixation, and phosphate solubilization [121]. Employing PGPB as a
biological instrument for the alleviation of salt stress offers a cost-effective and sustainable
methodology for the enhancement of crop yield in saline environments [14,121].

7. Organic Amendments Moderate Plant Growth and Biomass Allocation under
Salinity Stress

The recent use of various types of organic matter alterations to promote the growth
of plants exposed to salt stress has demonstrated a decrease in the oxidative and osmotic
stress of agricultural plants exposed to saline conditions. This reduction has been attributed
to increased microbial activities [122,123]. This was achieved by enhancing the disposal
of energy-rich C-containing compounds in the organic amendments, allowing soil mi-
croorganisms to biosynthesize osmolytes to mitigate the effects of osmotic pressure from
high-salinity conditions [124]. Organic soil amendments have been shown to offer consid-
erable benefits for saline soil ecosystems when used in conjunction with compost [125].
It has been demonstrated that incorporating organic matter into saline soils can intensify
the dissolution percentage of calcite (CaCO3) by facilitating the fast generation of carbonic
acid, thereby hastening the binding of small particles within the matrix. This results in
the formation of substantial aggregates, which remain stable in the aqueous environment.
A wide range of organic amendments for soil, including manure composites and biochar,
have been subjected to rigorous investigation to enhance the physical and chemical prop-
erties of saline–alkali soil, thereby lowering salinity, pH, and mitigating salinity stress
conditions (Figure 8) [126]. For example, recent studies have indicated that biochar can
result in notable differences in water content and movement within different layers and
depths of the soil [127]. Organic matter-rich amendments incorporated into the soil have
been demonstrated to enhance soil aggregation and improve the water-holding capacity,
thereby hindering the impacts of salt stress on productivity [128,129]. For example, the use
of biochar has been demonstrated to increase soil water content while reducing salinity
concentrations by up to 22% [130,131]. Importantly, biochar increased the availability of
soil potassium (K) concentrations by approximately 89% and foliar K concentrations up
to 25% [131]. It is known that biochar possesses the ability to bind potentially toxic salt
ions (Na+) at different scales [132]. This binding occurs due to the biochar’s inherent
absorptive properties, which are further augmented by its enormously high porosity, cation
exchange capacity, and large surface area [132]. Moreover, it has been shown that organic
amendments can enhance 48, 39, and 84% of the root fresh weight in maize plants under
salt stress [133]. The incorporation of organic amendments into marginal soils has been
demonstrated to enhance the growth and development of agricultural crops, particularly
those exposed to salinity stress conditions, thereby ensuring the sustainability of produc-
tion. Thus, it is important to apply biochar to reduce salinity and support sustainable food
production under changing climate conditions.
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8. Trace Elements Used in Salinity Stress Alleviation

Trace elements are mostly required at low levels for plant survival and growth. Chlo-
rine, boron, copper, ion, magnesium, manganese, zinc, etc. are some common examples of
trace elements. Applying micronutrients enhances the biosynthesis and synthesis of genes,
compatible solutes, and multiple enzymatic and nonenzymatic antioxidants [134]. These
efficiently scavenge toxic biomolecules like ROS and methylglyoxal (MG), and they accu-
mulate ophenolics and flavonoids thus mitigating salt stress. The trace elements promote
the exportation of accumulated Na+ ions from the plant cells through induced upregula-
tion of transporter and stress-associated osmotic stress-responsive genes, contributing to
plant salt tolerance (Figure 9). Multiple salinity-related genes, including those encoding
dehydration-responsive element-binding proteins 1, 2, and 3 (DREB1, 2, 3), as well as APX,
SOD, CAT, and genes involved in silicon transport like leLsi-1, -2, and -3, were observed to
be upregulated in salt-stressed tomato seedlings under Si treatment [135]. Exogenous plant
micronutrient treatment supplements metabolic pathways and promotes growth [134,136].
For example, Zn-treated plants showed higher heights, dry weights, and fresh weights
under 70 mM NaCl conditions [134]. Molybdenum reduced oxidative damage to plant
tissues when crested wheatgrass was subjected to saline soil stress conditions by raising
the activities of the three molybdenum-containing enzymes: nitrate reductase, aldehyde
oxidase, and xanthine dehydrogenase [137,138]. Evidence has shown that applying sele-
nium to parsley plants alleviated salinity stress by enhancing PSII function and decreasing
Na content in the shoot through the binding of Na to the root cell wall [139]. Al-Zahrani
et al. exogenously applied zinc to the seedlings of Vigna radiata and reported salinity
stress tolerance [140]. Despite several positive correlations between trace elements and salt
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tolerance, this relationship is not completely known and still needs further investigation.
This field requires investigation at the molecular and epigenomic levels. Furthermore,
optimal application of trace elements will help to avoid unnecessary crop losses. In this
regard, it is very important to conduct experiments to identify the exact dose, duration,
and application procedure for different species and cultivars.
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9. Concluding Remarks and Future Perspectives

This review highlights the innovative strategies applied to agricultural crop plants
to alleviate salinity stress, displaying their potential to ensure sustainable agricultural
productivity. The use of metabolomics approaches in the total inclusivity of cellular
metabolite profiling provides a high-level approach to examining the influence of metabolite
changes on a wider scale. State-of-the-art tools and procedures, including transcriptomics,
proteomics, and metabolomics, have been employed regularly to comprehend the cellular
processes, genetic control, and signaling networks involved in plant exposure to salinity
stress. Plant-associated microorganisms as biofertilizers promote plant productivity and
salinity-affected soils. These organisms can initiate the osmotic reaction, growth hormones,
and nutritional elements, working as biocontrol agents by inducing specific plant genes.
Organic matter and amendments can be relied on to amend saline soil conditions by
enhancing the soil’s physical and chemical conditions. Recently, nanotechnology has been
used for specific nutrient availability purposes and the conservation of soil fertility. Trace
elements, applied in the right quantity, have also been highlighted to improve the tolerance
of crops. There is a need for research scientists to conduct field experiments regarding
salinity, particularly regarding land evaluation and opportunities for salinity management
in the agroecosystem to promote land productivity. The future perspective of this study
lies in the introduction and improvement of the discussed developmental innovative
strategies in future research and breeding programs. These efforts will significantly improve
the tolerance of agricultural crops in response to saline stress, thereby increasing the
productivity of degraded agricultural lands. Additionally, farmers need to be informed and
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motivated to adopt such developmental technological solutions to mitigate soil salinization,
which will help to achieve food security targets.
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