Abstract:
In this paper, a two-hop amplify-and-forward relaying system, where an energy-constrained
relay node entirely depends on the energy scavenged from the source signal, is investigated. This paper
analyzes the performance of the energy-harvesting (EH) protocols, namely, ideal relaying receiver, powersplitting relaying (PSR), and time-switching relaying (TSR), over independent but not identically distributed
(i.n.i.d.) α-µ fading channels in terms of the ergodic capacity and ergodic outage probability (OP). We derive
exact unified and closed-form analytical expressions for the performance metrics with the aforementioned
protocols over i.n.i.d. α-µ channels. Three fading scenarios, such as Weibull, Nakagami-m, and Rayleigh
channels, are investigated. Provided simulation and numerical results validate our analysis. It is demonstrated
that the optimal EH time-switching and power-splitting factors of the corresponding TSR and PSR protocols
are critical in achieving the best system performance. Finally, we analyzed the impact of the fading
parameters α and µ on the achievable ergodic OP.