DSpace Repository

Geometric Flows of Curves, Two-Component Camassa-Holm Equation and Generalized Heisenberg Ferromagnet Equation

Show simple item record

dc.contributor.author Nugmanova, Gulgassyl
dc.contributor.author Taishiyeva, Aigul
dc.contributor.author Myrzakulov, Ratbay
dc.contributor.author Myrzakul, Tolkynai
dc.date.accessioned 2025-01-21T04:33:01Z
dc.date.available 2025-01-21T04:33:01Z
dc.date.issued 2021
dc.identifier.issn 1742-6596
dc.identifier.other doi:10.1088/1742-6596/2090/1/012068
dc.identifier.uri http://rep.enu.kz/handle/enu/20928
dc.description.abstract In this paper, we study the generalized Heisenberg ferromagnet equation, namely, the M-CVI equation. This equation is integrable. The integrable motion of the space curves induced by the M-CVI equation is presented. Using this result, the Lakshmanan (geometrical) equivalence between the M-CVI equation and the two-component CamassaHolm equation is established. ru
dc.language.iso en ru
dc.publisher Journal of Physics: Conference Series ru
dc.relation.ispartofseries 2090 (2021) 012068;
dc.title Geometric Flows of Curves, Two-Component Camassa-Holm Equation and Generalized Heisenberg Ferromagnet Equation ru
dc.type Article ru


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account