Репозиторий Dspace

Geometric Flows of Curves, Two-Component Camassa-Holm Equation and Generalized Heisenberg Ferromagnet Equation

Показать сокращенную информацию

dc.contributor.author Nugmanova, Gulgassyl
dc.contributor.author Taishiyeva, Aigul
dc.contributor.author Myrzakulov, Ratbay
dc.contributor.author Myrzakul, Tolkynai
dc.date.accessioned 2025-01-21T04:33:01Z
dc.date.available 2025-01-21T04:33:01Z
dc.date.issued 2021
dc.identifier.issn 1742-6596
dc.identifier.other doi:10.1088/1742-6596/2090/1/012068
dc.identifier.uri http://rep.enu.kz/handle/enu/20928
dc.description.abstract In this paper, we study the generalized Heisenberg ferromagnet equation, namely, the M-CVI equation. This equation is integrable. The integrable motion of the space curves induced by the M-CVI equation is presented. Using this result, the Lakshmanan (geometrical) equivalence between the M-CVI equation and the two-component CamassaHolm equation is established. ru
dc.language.iso en ru
dc.publisher Journal of Physics: Conference Series ru
dc.relation.ispartofseries 2090 (2021) 012068;
dc.title Geometric Flows of Curves, Two-Component Camassa-Holm Equation and Generalized Heisenberg Ferromagnet Equation ru
dc.type Article ru


Файлы в этом документе

Данный элемент включен в следующие коллекции

Показать сокращенную информацию

Поиск в DSpace


Просмотр

Моя учетная запись