Показать сокращенную информацию
dc.contributor.author | Sagidullayeva, Zhanna | |
dc.contributor.author | Nugmanova, Gulgassyl | |
dc.contributor.author | Myrzakulov, Ratbay | |
dc.contributor.author | Serikbayev, Nurzhan | |
dc.date.accessioned | 2025-01-21T09:30:34Z | |
dc.date.available | 2025-01-21T09:30:34Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Sagidullayeva, Z.; Nugmanova, G.; Myrzakulov, R.; Serikbayev, N. Integrable Kuralay Equations: Geometry, Solutions and Generalizations. Symmetry 2022, 14, 1374. https://doi.org/10.3390/ sym14071374 | ru |
dc.identifier.issn | 2548-2297 | |
dc.identifier.other | doi.org/10.3390/ sym14071374 | |
dc.identifier.uri | http://rep.enu.kz/handle/enu/20954 | |
dc.description.abstract | In this paper, we study the Kuralay equations, namely the Kuralay-I equation (K-IE) and the Kuralay-II equation (K-IIE). The integrable motion of space curves induced by these equations is investigated. The gauge equivalence between these two equations is established. With the help of the Hirota bilinear method, the simplest soliton solutions are also presented. The nonlocal and dispersionless versions of the Kuralay equations are considered. Some integrable generalizations and other related nonlinear differential equations are presented. | ru |
dc.language.iso | en | ru |
dc.publisher | Symmetry | ru |
dc.relation.ispartofseries | 14, 1374; | |
dc.subject | geometry | ru |
dc.subject | soliton solution | ru |
dc.subject | integrable generalizations | ru |
dc.subject | gauge equivalence | ru |
dc.subject | nonlocal and dispersionless equations | ru |
dc.title | Integrable Kuralay Equations: Geometry, Solutions and Generalizations | ru |
dc.type | Article | ru |